This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmultr2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N -> K || ( M x. N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmul2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M x. N ) ) |
|
| 2 | 1 | biantrud | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || N <-> ( K || N /\ N || ( M x. N ) ) ) ) |
| 3 | 2 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N <-> ( K || N /\ N || ( M x. N ) ) ) ) |
| 4 | simp1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
|
| 5 | simp3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 6 | zmulcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
|
| 7 | 6 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
| 8 | dvdstr | |- ( ( K e. ZZ /\ N e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( K || N /\ N || ( M x. N ) ) -> K || ( M x. N ) ) ) |
|
| 9 | 4 5 7 8 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || N /\ N || ( M x. N ) ) -> K || ( M x. N ) ) ) |
| 10 | 3 9 | sylbid | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N -> K || ( M x. N ) ) ) |