This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012) (Proof shortened by SN, 23-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpofun.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| Assertion | mpofun | |- Fun F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpofun.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | moeq | |- E* z z = C |
|
| 3 | 2 | moani | |- E* z ( ( x e. A /\ y e. B ) /\ z = C ) |
| 4 | 3 | funoprab | |- Fun { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 5 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
|
| 6 | 1 5 | eqtri | |- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 7 | 6 | funeqi | |- ( Fun F <-> Fun { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } ) |
| 8 | 4 7 | mpbir | |- Fun F |