This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkoopn.x | |- X = U. R |
|
| xkoopn.r | |- ( ph -> R e. Top ) |
||
| xkoopn.s | |- ( ph -> S e. Top ) |
||
| xkoopn.a | |- ( ph -> A C_ X ) |
||
| xkoopn.c | |- ( ph -> ( R |`t A ) e. Comp ) |
||
| xkoopn.u | |- ( ph -> U e. S ) |
||
| Assertion | xkoopn | |- ( ph -> { f e. ( R Cn S ) | ( f " A ) C_ U } e. ( S ^ko R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkoopn.x | |- X = U. R |
|
| 2 | xkoopn.r | |- ( ph -> R e. Top ) |
|
| 3 | xkoopn.s | |- ( ph -> S e. Top ) |
|
| 4 | xkoopn.a | |- ( ph -> A C_ X ) |
|
| 5 | xkoopn.c | |- ( ph -> ( R |`t A ) e. Comp ) |
|
| 6 | xkoopn.u | |- ( ph -> U e. S ) |
|
| 7 | ovex | |- ( R Cn S ) e. _V |
|
| 8 | 7 | pwex | |- ~P ( R Cn S ) e. _V |
| 9 | eqid | |- { x e. ~P X | ( R |`t x ) e. Comp } = { x e. ~P X | ( R |`t x ) e. Comp } |
|
| 10 | eqid | |- ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) = ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) |
|
| 11 | 1 9 10 | xkotf | |- ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) : ( { x e. ~P X | ( R |`t x ) e. Comp } X. S ) --> ~P ( R Cn S ) |
| 12 | frn | |- ( ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) : ( { x e. ~P X | ( R |`t x ) e. Comp } X. S ) --> ~P ( R Cn S ) -> ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) C_ ~P ( R Cn S ) ) |
|
| 13 | 11 12 | ax-mp | |- ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) C_ ~P ( R Cn S ) |
| 14 | 8 13 | ssexi | |- ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) e. _V |
| 15 | ssfii | |- ( ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) e. _V -> ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) C_ ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) ) |
|
| 16 | 14 15 | ax-mp | |- ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) C_ ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) |
| 17 | fvex | |- ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) e. _V |
|
| 18 | bastg | |- ( ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) e. _V -> ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) C_ ( topGen ` ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) ) ) |
|
| 19 | 17 18 | ax-mp | |- ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) C_ ( topGen ` ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) ) |
| 20 | 16 19 | sstri | |- ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) C_ ( topGen ` ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) ) |
| 21 | oveq2 | |- ( x = A -> ( R |`t x ) = ( R |`t A ) ) |
|
| 22 | 21 | eleq1d | |- ( x = A -> ( ( R |`t x ) e. Comp <-> ( R |`t A ) e. Comp ) ) |
| 23 | 1 | topopn | |- ( R e. Top -> X e. R ) |
| 24 | elpw2g | |- ( X e. R -> ( A e. ~P X <-> A C_ X ) ) |
|
| 25 | 2 23 24 | 3syl | |- ( ph -> ( A e. ~P X <-> A C_ X ) ) |
| 26 | 4 25 | mpbird | |- ( ph -> A e. ~P X ) |
| 27 | 22 26 5 | elrabd | |- ( ph -> A e. { x e. ~P X | ( R |`t x ) e. Comp } ) |
| 28 | eqidd | |- ( ph -> { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " A ) C_ U } ) |
|
| 29 | imaeq2 | |- ( k = A -> ( f " k ) = ( f " A ) ) |
|
| 30 | 29 | sseq1d | |- ( k = A -> ( ( f " k ) C_ v <-> ( f " A ) C_ v ) ) |
| 31 | 30 | rabbidv | |- ( k = A -> { f e. ( R Cn S ) | ( f " k ) C_ v } = { f e. ( R Cn S ) | ( f " A ) C_ v } ) |
| 32 | 31 | eqeq2d | |- ( k = A -> ( { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " k ) C_ v } <-> { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " A ) C_ v } ) ) |
| 33 | sseq2 | |- ( v = U -> ( ( f " A ) C_ v <-> ( f " A ) C_ U ) ) |
|
| 34 | 33 | rabbidv | |- ( v = U -> { f e. ( R Cn S ) | ( f " A ) C_ v } = { f e. ( R Cn S ) | ( f " A ) C_ U } ) |
| 35 | 34 | eqeq2d | |- ( v = U -> ( { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " A ) C_ v } <-> { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " A ) C_ U } ) ) |
| 36 | 32 35 | rspc2ev | |- ( ( A e. { x e. ~P X | ( R |`t x ) e. Comp } /\ U e. S /\ { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " A ) C_ U } ) -> E. k e. { x e. ~P X | ( R |`t x ) e. Comp } E. v e. S { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " k ) C_ v } ) |
| 37 | 27 6 28 36 | syl3anc | |- ( ph -> E. k e. { x e. ~P X | ( R |`t x ) e. Comp } E. v e. S { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " k ) C_ v } ) |
| 38 | 7 | rabex | |- { f e. ( R Cn S ) | ( f " A ) C_ U } e. _V |
| 39 | eqeq1 | |- ( y = { f e. ( R Cn S ) | ( f " A ) C_ U } -> ( y = { f e. ( R Cn S ) | ( f " k ) C_ v } <-> { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) |
|
| 40 | 39 | 2rexbidv | |- ( y = { f e. ( R Cn S ) | ( f " A ) C_ U } -> ( E. k e. { x e. ~P X | ( R |`t x ) e. Comp } E. v e. S y = { f e. ( R Cn S ) | ( f " k ) C_ v } <-> E. k e. { x e. ~P X | ( R |`t x ) e. Comp } E. v e. S { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) |
| 41 | 10 | rnmpo | |- ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) = { y | E. k e. { x e. ~P X | ( R |`t x ) e. Comp } E. v e. S y = { f e. ( R Cn S ) | ( f " k ) C_ v } } |
| 42 | 38 40 41 | elab2 | |- ( { f e. ( R Cn S ) | ( f " A ) C_ U } e. ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) <-> E. k e. { x e. ~P X | ( R |`t x ) e. Comp } E. v e. S { f e. ( R Cn S ) | ( f " A ) C_ U } = { f e. ( R Cn S ) | ( f " k ) C_ v } ) |
| 43 | 37 42 | sylibr | |- ( ph -> { f e. ( R Cn S ) | ( f " A ) C_ U } e. ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) |
| 44 | 20 43 | sselid | |- ( ph -> { f e. ( R Cn S ) | ( f " A ) C_ U } e. ( topGen ` ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) ) ) |
| 45 | 1 9 10 | xkoval | |- ( ( R e. Top /\ S e. Top ) -> ( S ^ko R ) = ( topGen ` ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) ) ) |
| 46 | 2 3 45 | syl2anc | |- ( ph -> ( S ^ko R ) = ( topGen ` ( fi ` ran ( k e. { x e. ~P X | ( R |`t x ) e. Comp } , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) ) ) |
| 47 | 44 46 | eleqtrrd | |- ( ph -> { f e. ( R Cn S ) | ( f " A ) C_ U } e. ( S ^ko R ) ) |