This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | |- V = ( Vtx ` G ) |
|
| wlkp1.i | |- I = ( iEdg ` G ) |
||
| wlkp1.f | |- ( ph -> Fun I ) |
||
| wlkp1.a | |- ( ph -> I e. Fin ) |
||
| wlkp1.b | |- ( ph -> B e. W ) |
||
| wlkp1.c | |- ( ph -> C e. V ) |
||
| wlkp1.d | |- ( ph -> -. B e. dom I ) |
||
| wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkp1.n | |- N = ( # ` F ) |
||
| wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
||
| wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
||
| wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
||
| wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
||
| wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
||
| wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
||
| wlkp1.l | |- ( ( ph /\ C = ( P ` N ) ) -> E = { C } ) |
||
| Assertion | wlkp1lem8 | |- ( ph -> A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkp1.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkp1.f | |- ( ph -> Fun I ) |
|
| 4 | wlkp1.a | |- ( ph -> I e. Fin ) |
|
| 5 | wlkp1.b | |- ( ph -> B e. W ) |
|
| 6 | wlkp1.c | |- ( ph -> C e. V ) |
|
| 7 | wlkp1.d | |- ( ph -> -. B e. dom I ) |
|
| 8 | wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 9 | wlkp1.n | |- N = ( # ` F ) |
|
| 10 | wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
|
| 11 | wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
|
| 12 | wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
|
| 13 | wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
|
| 14 | wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
|
| 15 | wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 16 | wlkp1.l | |- ( ( ph /\ C = ( P ` N ) ) -> E = { C } ) |
|
| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem6 | |- ( ph -> A. k e. ( 0 ..^ N ) ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) ) |
| 18 | 10 | elfvexd | |- ( ph -> G e. _V ) |
| 19 | 1 2 | iswlkg | |- ( G e. _V -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 20 | 18 19 | syl | |- ( ph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 21 | 9 | eqcomi | |- ( # ` F ) = N |
| 22 | 21 | oveq2i | |- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) |
| 23 | 22 | raleqi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 24 | 23 | biimpi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 25 | 24 | 3ad2ant3 | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 26 | 20 25 | biimtrdi | |- ( ph -> ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 27 | 8 26 | mpd | |- ( ph -> A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 28 | eqeq12 | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) -> ( ( Q ` k ) = ( Q ` ( k + 1 ) ) <-> ( P ` k ) = ( P ` ( k + 1 ) ) ) ) |
|
| 29 | 28 | 3adant3 | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( ( Q ` k ) = ( Q ` ( k + 1 ) ) <-> ( P ` k ) = ( P ` ( k + 1 ) ) ) ) |
| 30 | simp3 | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) |
|
| 31 | simp1 | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( Q ` k ) = ( P ` k ) ) |
|
| 32 | 31 | sneqd | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> { ( Q ` k ) } = { ( P ` k ) } ) |
| 33 | 30 32 | eqeq12d | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } <-> ( I ` ( F ` k ) ) = { ( P ` k ) } ) ) |
| 34 | preq12 | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) -> { ( Q ` k ) , ( Q ` ( k + 1 ) ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
|
| 35 | 34 | 3adant3 | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> { ( Q ` k ) , ( Q ` ( k + 1 ) ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 36 | 35 30 | sseq12d | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 37 | 29 33 36 | ifpbi123d | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 38 | 37 | biimprd | |- ( ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) |
| 39 | 38 | ral2imi | |- ( A. k e. ( 0 ..^ N ) ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) -> ( A. k e. ( 0 ..^ N ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) |
| 40 | 17 27 39 | sylc | |- ( ph -> A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) |
| 41 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | wlkp1lem3 | |- ( ph -> ( ( iEdg ` S ) ` ( H ` N ) ) = ( ( I u. { <. B , E >. } ) ` B ) ) |
| 42 | 41 | adantr | |- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> ( ( iEdg ` S ) ` ( H ` N ) ) = ( ( I u. { <. B , E >. } ) ` B ) ) |
| 43 | 5 10 7 | 3jca | |- ( ph -> ( B e. W /\ E e. ( Edg ` G ) /\ -. B e. dom I ) ) |
| 44 | 43 | adantr | |- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> ( B e. W /\ E e. ( Edg ` G ) /\ -. B e. dom I ) ) |
| 45 | fsnunfv | |- ( ( B e. W /\ E e. ( Edg ` G ) /\ -. B e. dom I ) -> ( ( I u. { <. B , E >. } ) ` B ) = E ) |
|
| 46 | 44 45 | syl | |- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> ( ( I u. { <. B , E >. } ) ` B ) = E ) |
| 47 | fveq2 | |- ( x = N -> ( Q ` x ) = ( Q ` N ) ) |
|
| 48 | fveq2 | |- ( x = N -> ( P ` x ) = ( P ` N ) ) |
|
| 49 | 47 48 | eqeq12d | |- ( x = N -> ( ( Q ` x ) = ( P ` x ) <-> ( Q ` N ) = ( P ` N ) ) ) |
| 50 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem5 | |- ( ph -> A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) ) |
| 51 | 2 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 52 | lencl | |- ( F e. Word dom I -> ( # ` F ) e. NN0 ) |
|
| 53 | 9 | eleq1i | |- ( N e. NN0 <-> ( # ` F ) e. NN0 ) |
| 54 | elnn0uz | |- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
|
| 55 | 53 54 | sylbb1 | |- ( ( # ` F ) e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
| 56 | 52 55 | syl | |- ( F e. Word dom I -> N e. ( ZZ>= ` 0 ) ) |
| 57 | 8 51 56 | 3syl | |- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 58 | 57 54 | sylibr | |- ( ph -> N e. NN0 ) |
| 59 | nn0fz0 | |- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
|
| 60 | 58 59 | sylib | |- ( ph -> N e. ( 0 ... N ) ) |
| 61 | 49 50 60 | rspcdva | |- ( ph -> ( Q ` N ) = ( P ` N ) ) |
| 62 | 14 | fveq1i | |- ( Q ` ( N + 1 ) ) = ( ( P u. { <. ( N + 1 ) , C >. } ) ` ( N + 1 ) ) |
| 63 | ovex | |- ( N + 1 ) e. _V |
|
| 64 | 1 2 3 4 5 6 7 8 9 | wlkp1lem1 | |- ( ph -> -. ( N + 1 ) e. dom P ) |
| 65 | fsnunfv | |- ( ( ( N + 1 ) e. _V /\ C e. V /\ -. ( N + 1 ) e. dom P ) -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` ( N + 1 ) ) = C ) |
|
| 66 | 63 6 64 65 | mp3an2i | |- ( ph -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` ( N + 1 ) ) = C ) |
| 67 | 62 66 | eqtrid | |- ( ph -> ( Q ` ( N + 1 ) ) = C ) |
| 68 | 67 | eqeq2d | |- ( ph -> ( ( P ` N ) = ( Q ` ( N + 1 ) ) <-> ( P ` N ) = C ) ) |
| 69 | eqcom | |- ( ( P ` N ) = C <-> C = ( P ` N ) ) |
|
| 70 | 68 69 | bitrdi | |- ( ph -> ( ( P ` N ) = ( Q ` ( N + 1 ) ) <-> C = ( P ` N ) ) ) |
| 71 | sneq | |- ( C = ( P ` N ) -> { C } = { ( P ` N ) } ) |
|
| 72 | 71 | adantl | |- ( ( ph /\ C = ( P ` N ) ) -> { C } = { ( P ` N ) } ) |
| 73 | 16 72 | eqtrd | |- ( ( ph /\ C = ( P ` N ) ) -> E = { ( P ` N ) } ) |
| 74 | 73 | ex | |- ( ph -> ( C = ( P ` N ) -> E = { ( P ` N ) } ) ) |
| 75 | 70 74 | sylbid | |- ( ph -> ( ( P ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( P ` N ) } ) ) |
| 76 | eqeq1 | |- ( ( Q ` N ) = ( P ` N ) -> ( ( Q ` N ) = ( Q ` ( N + 1 ) ) <-> ( P ` N ) = ( Q ` ( N + 1 ) ) ) ) |
|
| 77 | sneq | |- ( ( Q ` N ) = ( P ` N ) -> { ( Q ` N ) } = { ( P ` N ) } ) |
|
| 78 | 77 | eqeq2d | |- ( ( Q ` N ) = ( P ` N ) -> ( E = { ( Q ` N ) } <-> E = { ( P ` N ) } ) ) |
| 79 | 76 78 | imbi12d | |- ( ( Q ` N ) = ( P ` N ) -> ( ( ( Q ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( Q ` N ) } ) <-> ( ( P ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( P ` N ) } ) ) ) |
| 80 | 75 79 | syl5ibrcom | |- ( ph -> ( ( Q ` N ) = ( P ` N ) -> ( ( Q ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( Q ` N ) } ) ) ) |
| 81 | 61 80 | mpd | |- ( ph -> ( ( Q ` N ) = ( Q ` ( N + 1 ) ) -> E = { ( Q ` N ) } ) ) |
| 82 | 81 | imp | |- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> E = { ( Q ` N ) } ) |
| 83 | 42 46 82 | 3eqtrd | |- ( ( ph /\ ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } ) |
| 84 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem7 | |- ( ph -> { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) |
| 85 | 84 | adantr | |- ( ( ph /\ -. ( Q ` N ) = ( Q ` ( N + 1 ) ) ) -> { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) |
| 86 | 83 85 | ifpimpda | |- ( ph -> if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) |
| 87 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | wlkp1lem2 | |- ( ph -> ( # ` H ) = ( N + 1 ) ) |
| 88 | 87 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ ( N + 1 ) ) ) |
| 89 | fzosplitsn | |- ( N e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( N + 1 ) ) = ( ( 0 ..^ N ) u. { N } ) ) |
|
| 90 | 57 89 | syl | |- ( ph -> ( 0 ..^ ( N + 1 ) ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 91 | 88 90 | eqtrd | |- ( ph -> ( 0 ..^ ( # ` H ) ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 92 | 91 | raleqdv | |- ( ph -> ( A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> A. k e. ( ( 0 ..^ N ) u. { N } ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) |
| 93 | ralunb | |- ( A. k e. ( ( 0 ..^ N ) u. { N } ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) |
|
| 94 | 93 | a1i | |- ( ph -> ( A. k e. ( ( 0 ..^ N ) u. { N } ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) ) ) |
| 95 | 9 | fvexi | |- N e. _V |
| 96 | wkslem1 | |- ( k = N -> ( if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) |
|
| 97 | 96 | ralsng | |- ( N e. _V -> ( A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) |
| 98 | 95 97 | mp1i | |- ( ph -> ( A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) |
| 99 | 98 | anbi2d | |- ( ph -> ( ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ A. k e. { N } if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) <-> ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) ) |
| 100 | 92 94 99 | 3bitrd | |- ( ph -> ( A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) <-> ( A. k e. ( 0 ..^ N ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) /\ if- ( ( Q ` N ) = ( Q ` ( N + 1 ) ) , ( ( iEdg ` S ) ` ( H ` N ) ) = { ( Q ` N ) } , { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) ) ) ) |
| 101 | 40 86 100 | mpbir2and | |- ( ph -> A. k e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` k ) = ( Q ` ( k + 1 ) ) , ( ( iEdg ` S ) ` ( H ` k ) ) = { ( Q ` k ) } , { ( Q ` k ) , ( Q ` ( k + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` k ) ) ) ) |