This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | |- V = ( Vtx ` G ) |
|
| wlkp1.i | |- I = ( iEdg ` G ) |
||
| wlkp1.f | |- ( ph -> Fun I ) |
||
| wlkp1.a | |- ( ph -> I e. Fin ) |
||
| wlkp1.b | |- ( ph -> B e. W ) |
||
| wlkp1.c | |- ( ph -> C e. V ) |
||
| wlkp1.d | |- ( ph -> -. B e. dom I ) |
||
| wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkp1.n | |- N = ( # ` F ) |
||
| wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
||
| wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
||
| wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
||
| wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
||
| Assertion | wlkp1lem3 | |- ( ph -> ( ( iEdg ` S ) ` ( H ` N ) ) = ( ( I u. { <. B , E >. } ) ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkp1.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkp1.f | |- ( ph -> Fun I ) |
|
| 4 | wlkp1.a | |- ( ph -> I e. Fin ) |
|
| 5 | wlkp1.b | |- ( ph -> B e. W ) |
|
| 6 | wlkp1.c | |- ( ph -> C e. V ) |
|
| 7 | wlkp1.d | |- ( ph -> -. B e. dom I ) |
|
| 8 | wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 9 | wlkp1.n | |- N = ( # ` F ) |
|
| 10 | wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
|
| 11 | wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
|
| 12 | wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
|
| 13 | wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
|
| 14 | 13 | a1i | |- ( ph -> H = ( F u. { <. N , B >. } ) ) |
| 15 | 14 | fveq1d | |- ( ph -> ( H ` N ) = ( ( F u. { <. N , B >. } ) ` N ) ) |
| 16 | 9 | fvexi | |- N e. _V |
| 17 | 2 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 18 | lencl | |- ( F e. Word dom I -> ( # ` F ) e. NN0 ) |
|
| 19 | wrddm | |- ( F e. Word dom I -> dom F = ( 0 ..^ ( # ` F ) ) ) |
|
| 20 | fzonel | |- -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) |
|
| 21 | 9 | a1i | |- ( ( ( # ` F ) e. NN0 /\ dom F = ( 0 ..^ ( # ` F ) ) ) -> N = ( # ` F ) ) |
| 22 | simpr | |- ( ( ( # ` F ) e. NN0 /\ dom F = ( 0 ..^ ( # ` F ) ) ) -> dom F = ( 0 ..^ ( # ` F ) ) ) |
|
| 23 | 21 22 | eleq12d | |- ( ( ( # ` F ) e. NN0 /\ dom F = ( 0 ..^ ( # ` F ) ) ) -> ( N e. dom F <-> ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) ) |
| 24 | 20 23 | mtbiri | |- ( ( ( # ` F ) e. NN0 /\ dom F = ( 0 ..^ ( # ` F ) ) ) -> -. N e. dom F ) |
| 25 | 18 19 24 | syl2anc | |- ( F e. Word dom I -> -. N e. dom F ) |
| 26 | 8 17 25 | 3syl | |- ( ph -> -. N e. dom F ) |
| 27 | fsnunfv | |- ( ( N e. _V /\ B e. W /\ -. N e. dom F ) -> ( ( F u. { <. N , B >. } ) ` N ) = B ) |
|
| 28 | 16 5 26 27 | mp3an2i | |- ( ph -> ( ( F u. { <. N , B >. } ) ` N ) = B ) |
| 29 | 15 28 | eqtrd | |- ( ph -> ( H ` N ) = B ) |
| 30 | 12 29 | fveq12d | |- ( ph -> ( ( iEdg ` S ) ` ( H ` N ) ) = ( ( I u. { <. B , E >. } ) ` B ) ) |