This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | |- V = ( Vtx ` G ) |
|
| wlkp1.i | |- I = ( iEdg ` G ) |
||
| wlkp1.f | |- ( ph -> Fun I ) |
||
| wlkp1.a | |- ( ph -> I e. Fin ) |
||
| wlkp1.b | |- ( ph -> B e. W ) |
||
| wlkp1.c | |- ( ph -> C e. V ) |
||
| wlkp1.d | |- ( ph -> -. B e. dom I ) |
||
| wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkp1.n | |- N = ( # ` F ) |
||
| wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
||
| wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
||
| wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
||
| wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
||
| Assertion | wlkp1lem2 | |- ( ph -> ( # ` H ) = ( N + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkp1.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkp1.f | |- ( ph -> Fun I ) |
|
| 4 | wlkp1.a | |- ( ph -> I e. Fin ) |
|
| 5 | wlkp1.b | |- ( ph -> B e. W ) |
|
| 6 | wlkp1.c | |- ( ph -> C e. V ) |
|
| 7 | wlkp1.d | |- ( ph -> -. B e. dom I ) |
|
| 8 | wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 9 | wlkp1.n | |- N = ( # ` F ) |
|
| 10 | wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
|
| 11 | wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
|
| 12 | wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
|
| 13 | wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
|
| 14 | 13 | fveq2i | |- ( # ` H ) = ( # ` ( F u. { <. N , B >. } ) ) |
| 15 | 14 | a1i | |- ( ph -> ( # ` H ) = ( # ` ( F u. { <. N , B >. } ) ) ) |
| 16 | opex | |- <. N , B >. e. _V |
|
| 17 | 2 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 18 | wrdfin | |- ( F e. Word dom I -> F e. Fin ) |
|
| 19 | 8 17 18 | 3syl | |- ( ph -> F e. Fin ) |
| 20 | fzonel | |- -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) |
|
| 21 | 20 | a1i | |- ( ph -> -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) |
| 22 | eleq1 | |- ( N = ( # ` F ) -> ( N e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) ) |
|
| 23 | 22 | notbid | |- ( N = ( # ` F ) -> ( -. N e. ( 0 ..^ ( # ` F ) ) <-> -. ( # ` F ) e. ( 0 ..^ ( # ` F ) ) ) ) |
| 24 | 21 23 | imbitrrid | |- ( N = ( # ` F ) -> ( ph -> -. N e. ( 0 ..^ ( # ` F ) ) ) ) |
| 25 | 9 24 | ax-mp | |- ( ph -> -. N e. ( 0 ..^ ( # ` F ) ) ) |
| 26 | wrdfn | |- ( F e. Word dom I -> F Fn ( 0 ..^ ( # ` F ) ) ) |
|
| 27 | fnop | |- ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ <. N , B >. e. F ) -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 28 | 27 | ex | |- ( F Fn ( 0 ..^ ( # ` F ) ) -> ( <. N , B >. e. F -> N e. ( 0 ..^ ( # ` F ) ) ) ) |
| 29 | 8 17 26 28 | 4syl | |- ( ph -> ( <. N , B >. e. F -> N e. ( 0 ..^ ( # ` F ) ) ) ) |
| 30 | 25 29 | mtod | |- ( ph -> -. <. N , B >. e. F ) |
| 31 | 19 30 | jca | |- ( ph -> ( F e. Fin /\ -. <. N , B >. e. F ) ) |
| 32 | hashunsng | |- ( <. N , B >. e. _V -> ( ( F e. Fin /\ -. <. N , B >. e. F ) -> ( # ` ( F u. { <. N , B >. } ) ) = ( ( # ` F ) + 1 ) ) ) |
|
| 33 | 16 31 32 | mpsyl | |- ( ph -> ( # ` ( F u. { <. N , B >. } ) ) = ( ( # ` F ) + 1 ) ) |
| 34 | 9 | eqcomi | |- ( # ` F ) = N |
| 35 | 34 | a1i | |- ( ph -> ( # ` F ) = N ) |
| 36 | 35 | oveq1d | |- ( ph -> ( ( # ` F ) + 1 ) = ( N + 1 ) ) |
| 37 | 15 33 36 | 3eqtrd | |- ( ph -> ( # ` H ) = ( N + 1 ) ) |