This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | |- V = ( Vtx ` G ) |
|
| wlkp1.i | |- I = ( iEdg ` G ) |
||
| wlkp1.f | |- ( ph -> Fun I ) |
||
| wlkp1.a | |- ( ph -> I e. Fin ) |
||
| wlkp1.b | |- ( ph -> B e. W ) |
||
| wlkp1.c | |- ( ph -> C e. V ) |
||
| wlkp1.d | |- ( ph -> -. B e. dom I ) |
||
| wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkp1.n | |- N = ( # ` F ) |
||
| wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
||
| wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
||
| wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
||
| wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
||
| wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
||
| wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
||
| Assertion | wlkp1lem7 | |- ( ph -> { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkp1.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkp1.f | |- ( ph -> Fun I ) |
|
| 4 | wlkp1.a | |- ( ph -> I e. Fin ) |
|
| 5 | wlkp1.b | |- ( ph -> B e. W ) |
|
| 6 | wlkp1.c | |- ( ph -> C e. V ) |
|
| 7 | wlkp1.d | |- ( ph -> -. B e. dom I ) |
|
| 8 | wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 9 | wlkp1.n | |- N = ( # ` F ) |
|
| 10 | wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
|
| 11 | wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
|
| 12 | wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
|
| 13 | wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
|
| 14 | wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
|
| 15 | wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 16 | fveq2 | |- ( k = N -> ( Q ` k ) = ( Q ` N ) ) |
|
| 17 | fveq2 | |- ( k = N -> ( P ` k ) = ( P ` N ) ) |
|
| 18 | 16 17 | eqeq12d | |- ( k = N -> ( ( Q ` k ) = ( P ` k ) <-> ( Q ` N ) = ( P ` N ) ) ) |
| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem5 | |- ( ph -> A. k e. ( 0 ... N ) ( Q ` k ) = ( P ` k ) ) |
| 20 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 21 | 9 | eqcomi | |- ( # ` F ) = N |
| 22 | 21 | eleq1i | |- ( ( # ` F ) e. NN0 <-> N e. NN0 ) |
| 23 | nn0fz0 | |- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
|
| 24 | 22 23 | sylbb | |- ( ( # ` F ) e. NN0 -> N e. ( 0 ... N ) ) |
| 25 | 8 20 24 | 3syl | |- ( ph -> N e. ( 0 ... N ) ) |
| 26 | 18 19 25 | rspcdva | |- ( ph -> ( Q ` N ) = ( P ` N ) ) |
| 27 | 14 | fveq1i | |- ( Q ` ( N + 1 ) ) = ( ( P u. { <. ( N + 1 ) , C >. } ) ` ( N + 1 ) ) |
| 28 | ovex | |- ( N + 1 ) e. _V |
|
| 29 | 1 2 3 4 5 6 7 8 9 | wlkp1lem1 | |- ( ph -> -. ( N + 1 ) e. dom P ) |
| 30 | fsnunfv | |- ( ( ( N + 1 ) e. _V /\ C e. V /\ -. ( N + 1 ) e. dom P ) -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` ( N + 1 ) ) = C ) |
|
| 31 | 28 6 29 30 | mp3an2i | |- ( ph -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` ( N + 1 ) ) = C ) |
| 32 | 27 31 | eqtrid | |- ( ph -> ( Q ` ( N + 1 ) ) = C ) |
| 33 | 26 32 | preq12d | |- ( ph -> { ( Q ` N ) , ( Q ` ( N + 1 ) ) } = { ( P ` N ) , C } ) |
| 34 | fsnunfv | |- ( ( B e. W /\ E e. ( Edg ` G ) /\ -. B e. dom I ) -> ( ( I u. { <. B , E >. } ) ` B ) = E ) |
|
| 35 | 5 10 7 34 | syl3anc | |- ( ph -> ( ( I u. { <. B , E >. } ) ` B ) = E ) |
| 36 | 11 33 35 | 3sstr4d | |- ( ph -> { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( I u. { <. B , E >. } ) ` B ) ) |
| 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | wlkp1lem3 | |- ( ph -> ( ( iEdg ` S ) ` ( H ` N ) ) = ( ( I u. { <. B , E >. } ) ` B ) ) |
| 38 | 36 37 | sseqtrrd | |- ( ph -> { ( Q ` N ) , ( Q ` ( N + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` N ) ) ) |