This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wkslem1 | |- ( A = B -> ( if- ( ( P ` A ) = ( P ` ( A + 1 ) ) , ( I ` ( F ` A ) ) = { ( P ` A ) } , { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) ) <-> if- ( ( P ` B ) = ( P ` ( B + 1 ) ) , ( I ` ( F ` B ) ) = { ( P ` B ) } , { ( P ` B ) , ( P ` ( B + 1 ) ) } C_ ( I ` ( F ` B ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( A = B -> ( P ` A ) = ( P ` B ) ) |
|
| 2 | fvoveq1 | |- ( A = B -> ( P ` ( A + 1 ) ) = ( P ` ( B + 1 ) ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( A = B -> ( ( P ` A ) = ( P ` ( A + 1 ) ) <-> ( P ` B ) = ( P ` ( B + 1 ) ) ) ) |
| 4 | 2fveq3 | |- ( A = B -> ( I ` ( F ` A ) ) = ( I ` ( F ` B ) ) ) |
|
| 5 | 1 | sneqd | |- ( A = B -> { ( P ` A ) } = { ( P ` B ) } ) |
| 6 | 4 5 | eqeq12d | |- ( A = B -> ( ( I ` ( F ` A ) ) = { ( P ` A ) } <-> ( I ` ( F ` B ) ) = { ( P ` B ) } ) ) |
| 7 | 1 2 | preq12d | |- ( A = B -> { ( P ` A ) , ( P ` ( A + 1 ) ) } = { ( P ` B ) , ( P ` ( B + 1 ) ) } ) |
| 8 | 7 4 | sseq12d | |- ( A = B -> ( { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) <-> { ( P ` B ) , ( P ` ( B + 1 ) ) } C_ ( I ` ( F ` B ) ) ) ) |
| 9 | 3 6 8 | ifpbi123d | |- ( A = B -> ( if- ( ( P ` A ) = ( P ` ( A + 1 ) ) , ( I ` ( F ` A ) ) = { ( P ` A ) } , { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) ) <-> if- ( ( P ` B ) = ( P ` ( B + 1 ) ) , ( I ` ( F ` B ) ) = { ( P ` B ) } , { ( P ` B ) , ( P ` ( B + 1 ) ) } C_ ( I ` ( F ` B ) ) ) ) ) |