This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | |- V = ( Vtx ` G ) |
|
| wlkp1.i | |- I = ( iEdg ` G ) |
||
| wlkp1.f | |- ( ph -> Fun I ) |
||
| wlkp1.a | |- ( ph -> I e. Fin ) |
||
| wlkp1.b | |- ( ph -> B e. W ) |
||
| wlkp1.c | |- ( ph -> C e. V ) |
||
| wlkp1.d | |- ( ph -> -. B e. dom I ) |
||
| wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkp1.n | |- N = ( # ` F ) |
||
| Assertion | wlkp1lem1 | |- ( ph -> -. ( N + 1 ) e. dom P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkp1.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkp1.f | |- ( ph -> Fun I ) |
|
| 4 | wlkp1.a | |- ( ph -> I e. Fin ) |
|
| 5 | wlkp1.b | |- ( ph -> B e. W ) |
|
| 6 | wlkp1.c | |- ( ph -> C e. V ) |
|
| 7 | wlkp1.d | |- ( ph -> -. B e. dom I ) |
|
| 8 | wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 9 | wlkp1.n | |- N = ( # ` F ) |
|
| 10 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 11 | 1 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 12 | 10 11 | jca | |- ( F ( Walks ` G ) P -> ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> V ) ) |
| 13 | fzp1nel | |- -. ( ( # ` F ) + 1 ) e. ( 0 ... ( # ` F ) ) |
|
| 14 | 13 | a1i | |- ( ( # ` F ) e. NN0 -> -. ( ( # ` F ) + 1 ) e. ( 0 ... ( # ` F ) ) ) |
| 15 | 9 | oveq1i | |- ( N + 1 ) = ( ( # ` F ) + 1 ) |
| 16 | 15 | eleq1i | |- ( ( N + 1 ) e. ( 0 ... ( # ` F ) ) <-> ( ( # ` F ) + 1 ) e. ( 0 ... ( # ` F ) ) ) |
| 17 | 14 16 | sylnibr | |- ( ( # ` F ) e. NN0 -> -. ( N + 1 ) e. ( 0 ... ( # ` F ) ) ) |
| 18 | eleq2 | |- ( dom P = ( 0 ... ( # ` F ) ) -> ( ( N + 1 ) e. dom P <-> ( N + 1 ) e. ( 0 ... ( # ` F ) ) ) ) |
|
| 19 | 18 | notbid | |- ( dom P = ( 0 ... ( # ` F ) ) -> ( -. ( N + 1 ) e. dom P <-> -. ( N + 1 ) e. ( 0 ... ( # ` F ) ) ) ) |
| 20 | 17 19 | syl5ibrcom | |- ( ( # ` F ) e. NN0 -> ( dom P = ( 0 ... ( # ` F ) ) -> -. ( N + 1 ) e. dom P ) ) |
| 21 | fdm | |- ( P : ( 0 ... ( # ` F ) ) --> V -> dom P = ( 0 ... ( # ` F ) ) ) |
|
| 22 | 20 21 | impel | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> V ) -> -. ( N + 1 ) e. dom P ) |
| 23 | 8 12 22 | 3syl | |- ( ph -> -. ( N + 1 ) e. dom P ) |