This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006) Allow shortening of ralim . (Revised by Wolf Lammen, 1-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ral2imi.1 | |- ( ph -> ( ps -> ch ) ) |
|
| Assertion | ral2imi | |- ( A. x e. A ph -> ( A. x e. A ps -> A. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral2imi.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 3 | 1 | imim3i | |- ( ( x e. A -> ph ) -> ( ( x e. A -> ps ) -> ( x e. A -> ch ) ) ) |
| 4 | 3 | al2imi | |- ( A. x ( x e. A -> ph ) -> ( A. x ( x e. A -> ps ) -> A. x ( x e. A -> ch ) ) ) |
| 5 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
| 6 | df-ral | |- ( A. x e. A ch <-> A. x ( x e. A -> ch ) ) |
|
| 7 | 4 5 6 | 3imtr4g | |- ( A. x ( x e. A -> ph ) -> ( A. x e. A ps -> A. x e. A ch ) ) |
| 8 | 2 7 | sylbi | |- ( A. x e. A ph -> ( A. x e. A ps -> A. x e. A ch ) ) |