This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplitsn | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ ( B + 1 ) ) = ( ( A ..^ B ) u. { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( B e. ( ZZ>= ` A ) -> B e. ( ZZ>= ` A ) ) |
|
| 2 | eluzelz | |- ( B e. ( ZZ>= ` A ) -> B e. ZZ ) |
|
| 3 | uzid | |- ( B e. ZZ -> B e. ( ZZ>= ` B ) ) |
|
| 4 | peano2uz | |- ( B e. ( ZZ>= ` B ) -> ( B + 1 ) e. ( ZZ>= ` B ) ) |
|
| 5 | 2 3 4 | 3syl | |- ( B e. ( ZZ>= ` A ) -> ( B + 1 ) e. ( ZZ>= ` B ) ) |
| 6 | elfzuzb | |- ( B e. ( A ... ( B + 1 ) ) <-> ( B e. ( ZZ>= ` A ) /\ ( B + 1 ) e. ( ZZ>= ` B ) ) ) |
|
| 7 | 1 5 6 | sylanbrc | |- ( B e. ( ZZ>= ` A ) -> B e. ( A ... ( B + 1 ) ) ) |
| 8 | fzosplit | |- ( B e. ( A ... ( B + 1 ) ) -> ( A ..^ ( B + 1 ) ) = ( ( A ..^ B ) u. ( B ..^ ( B + 1 ) ) ) ) |
|
| 9 | 7 8 | syl | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ ( B + 1 ) ) = ( ( A ..^ B ) u. ( B ..^ ( B + 1 ) ) ) ) |
| 10 | fzosn | |- ( B e. ZZ -> ( B ..^ ( B + 1 ) ) = { B } ) |
|
| 11 | 2 10 | syl | |- ( B e. ( ZZ>= ` A ) -> ( B ..^ ( B + 1 ) ) = { B } ) |
| 12 | 11 | uneq2d | |- ( B e. ( ZZ>= ` A ) -> ( ( A ..^ B ) u. ( B ..^ ( B + 1 ) ) ) = ( ( A ..^ B ) u. { B } ) ) |
| 13 | 9 12 | eqtrd | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ ( B + 1 ) ) = ( ( A ..^ B ) u. { B } ) ) |