This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalization of iswlk : Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 1-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iswlkg.v | |- V = ( Vtx ` G ) |
|
| iswlkg.i | |- I = ( iEdg ` G ) |
||
| Assertion | iswlkg | |- ( G e. W -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswlkg.v | |- V = ( Vtx ` G ) |
|
| 2 | iswlkg.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 4 | 3simpc | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F e. _V /\ P e. _V ) ) |
|
| 5 | 3 4 | syl | |- ( F ( Walks ` G ) P -> ( F e. _V /\ P e. _V ) ) |
| 6 | 5 | a1i | |- ( G e. W -> ( F ( Walks ` G ) P -> ( F e. _V /\ P e. _V ) ) ) |
| 7 | elex | |- ( F e. Word dom I -> F e. _V ) |
|
| 8 | ovex | |- ( 0 ... ( # ` F ) ) e. _V |
|
| 9 | 1 | fvexi | |- V e. _V |
| 10 | 8 9 | fpm | |- ( P : ( 0 ... ( # ` F ) ) --> V -> P e. ( V ^pm ( 0 ... ( # ` F ) ) ) ) |
| 11 | 10 | elexd | |- ( P : ( 0 ... ( # ` F ) ) --> V -> P e. _V ) |
| 12 | 7 11 | anim12i | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( F e. _V /\ P e. _V ) ) |
| 13 | 12 | 3adant3 | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( F e. _V /\ P e. _V ) ) |
| 14 | 13 | a1i | |- ( G e. W -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( F e. _V /\ P e. _V ) ) ) |
| 15 | 1 2 | iswlk | |- ( ( G e. W /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 16 | 15 | 3expib | |- ( G e. W -> ( ( F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) ) |
| 17 | 6 14 16 | pm5.21ndd | |- ( G e. W -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |