This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 17-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifpbi123d.1 | |- ( ph -> ( ps <-> ta ) ) |
|
| ifpbi123d.2 | |- ( ph -> ( ch <-> et ) ) |
||
| ifpbi123d.3 | |- ( ph -> ( th <-> ze ) ) |
||
| Assertion | ifpbi123d | |- ( ph -> ( if- ( ps , ch , th ) <-> if- ( ta , et , ze ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpbi123d.1 | |- ( ph -> ( ps <-> ta ) ) |
|
| 2 | ifpbi123d.2 | |- ( ph -> ( ch <-> et ) ) |
|
| 3 | ifpbi123d.3 | |- ( ph -> ( th <-> ze ) ) |
|
| 4 | 1 2 | imbi12d | |- ( ph -> ( ( ps -> ch ) <-> ( ta -> et ) ) ) |
| 5 | 1 3 | orbi12d | |- ( ph -> ( ( ps \/ th ) <-> ( ta \/ ze ) ) ) |
| 6 | 4 5 | anbi12d | |- ( ph -> ( ( ( ps -> ch ) /\ ( ps \/ th ) ) <-> ( ( ta -> et ) /\ ( ta \/ ze ) ) ) ) |
| 7 | dfifp3 | |- ( if- ( ps , ch , th ) <-> ( ( ps -> ch ) /\ ( ps \/ th ) ) ) |
|
| 8 | dfifp3 | |- ( if- ( ta , et , ze ) <-> ( ( ta -> et ) /\ ( ta \/ ze ) ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ph -> ( if- ( ps , ch , th ) <-> if- ( ta , et , ze ) ) ) |