This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | ||
| wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | ||
| wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | ||
| wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | ||
| wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | ||
| wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | ||
| wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| wlkp1.l | ⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { 𝐶 } ) | ||
| Assertion | wlkp1lem8 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 7 | wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | |
| 8 | wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 10 | wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | |
| 11 | wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | |
| 12 | wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | |
| 13 | wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | |
| 14 | wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | |
| 15 | wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 16 | wlkp1.l | ⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { 𝐶 } ) | |
| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem6 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 18 | 10 | elfvexd | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 19 | 1 2 | iswlkg | ⊢ ( 𝐺 ∈ V → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 21 | 9 | eqcomi | ⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 22 | 21 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 ) |
| 23 | 22 | raleqi | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 24 | 23 | biimpi | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 25 | 24 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 26 | 20 25 | biimtrdi | ⊢ ( 𝜑 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 27 | 8 26 | mpd | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 28 | eqeq12 | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 29 | 28 | 3adant3 | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 30 | simp3 | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 31 | simp1 | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) | |
| 32 | 31 | sneqd | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → { ( 𝑄 ‘ 𝑘 ) } = { ( 𝑃 ‘ 𝑘 ) } ) |
| 33 | 30 32 | eqeq12d | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) |
| 34 | preq12 | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) | |
| 35 | 34 | 3adant3 | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
| 36 | 35 30 | sseq12d | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 37 | 29 33 36 | ifpbi123d | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 38 | 37 | biimprd | ⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 39 | 38 | ral2imi | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 40 | 17 27 39 | sylc | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 41 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | wlkp1lem3 | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |
| 43 | 5 10 7 | 3jca | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) ) |
| 45 | fsnunfv | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) = 𝐸 ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) = 𝐸 ) |
| 47 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑁 ) ) | |
| 48 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ) | |
| 49 | 47 48 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 50 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) |
| 51 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 52 | lencl | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 53 | 9 | eleq1i | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 54 | elnn0uz | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 55 | 53 54 | sylbb1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 56 | 52 55 | syl | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 57 | 8 51 56 | 3syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 58 | 57 54 | sylibr | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 59 | nn0fz0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) | |
| 60 | 58 59 | sylib | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 61 | 49 50 60 | rspcdva | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) |
| 62 | 14 | fveq1i | ⊢ ( 𝑄 ‘ ( 𝑁 + 1 ) ) = ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) |
| 63 | ovex | ⊢ ( 𝑁 + 1 ) ∈ V | |
| 64 | 1 2 3 4 5 6 7 8 9 | wlkp1lem1 | ⊢ ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |
| 65 | fsnunfv | ⊢ ( ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) | |
| 66 | 63 6 64 65 | mp3an2i | ⊢ ( 𝜑 → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 67 | 62 66 | eqtrid | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 68 | 67 | eqeq2d | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃 ‘ 𝑁 ) = 𝐶 ) ) |
| 69 | eqcom | ⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝐶 ↔ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) | |
| 70 | 68 69 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ↔ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) ) |
| 71 | sneq | ⊢ ( 𝐶 = ( 𝑃 ‘ 𝑁 ) → { 𝐶 } = { ( 𝑃 ‘ 𝑁 ) } ) | |
| 72 | 71 | adantl | ⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → { 𝐶 } = { ( 𝑃 ‘ 𝑁 ) } ) |
| 73 | 16 72 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) |
| 74 | 73 | ex | ⊢ ( 𝜑 → ( 𝐶 = ( 𝑃 ‘ 𝑁 ) → 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) ) |
| 75 | 70 74 | sylbid | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) ) |
| 76 | eqeq1 | ⊢ ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 77 | sneq | ⊢ ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → { ( 𝑄 ‘ 𝑁 ) } = { ( 𝑃 ‘ 𝑁 ) } ) | |
| 78 | 77 | eqeq2d | ⊢ ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → ( 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ↔ 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) ) |
| 79 | 76 78 | imbi12d | ⊢ ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → ( ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ) ↔ ( ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 80 | 75 79 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ) ) ) |
| 81 | 61 80 | mpd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ) ) |
| 82 | 81 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ) |
| 83 | 42 46 82 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } ) |
| 84 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem7 | ⊢ ( 𝜑 → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
| 85 | 84 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
| 86 | 83 85 | ifpimpda | ⊢ ( 𝜑 → if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) |
| 87 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | wlkp1lem2 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑁 + 1 ) ) |
| 88 | 87 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 89 | fzosplitsn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) | |
| 90 | 57 89 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
| 91 | 88 90 | eqtrd | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
| 92 | 91 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 93 | ralunb | ⊢ ( ∀ 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) | |
| 94 | 93 | a1i | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) ) |
| 95 | 9 | fvexi | ⊢ 𝑁 ∈ V |
| 96 | wkslem1 | ⊢ ( 𝑘 = 𝑁 → ( if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) | |
| 97 | 96 | ralsng | ⊢ ( 𝑁 ∈ V → ( ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) |
| 98 | 95 97 | mp1i | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) |
| 99 | 98 | anbi2d | ⊢ ( 𝜑 → ( ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) ) |
| 100 | 92 94 99 | 3bitrd | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) ) |
| 101 | 40 86 100 | mpbir2and | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |