This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | |- V = ( Vtx ` G ) |
|
| wlkp1.i | |- I = ( iEdg ` G ) |
||
| wlkp1.f | |- ( ph -> Fun I ) |
||
| wlkp1.a | |- ( ph -> I e. Fin ) |
||
| wlkp1.b | |- ( ph -> B e. W ) |
||
| wlkp1.c | |- ( ph -> C e. V ) |
||
| wlkp1.d | |- ( ph -> -. B e. dom I ) |
||
| wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkp1.n | |- N = ( # ` F ) |
||
| wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
||
| wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
||
| wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
||
| wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
||
| wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
||
| wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
||
| Assertion | wlkp1lem6 | |- ( ph -> A. k e. ( 0 ..^ N ) ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkp1.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkp1.f | |- ( ph -> Fun I ) |
|
| 4 | wlkp1.a | |- ( ph -> I e. Fin ) |
|
| 5 | wlkp1.b | |- ( ph -> B e. W ) |
|
| 6 | wlkp1.c | |- ( ph -> C e. V ) |
|
| 7 | wlkp1.d | |- ( ph -> -. B e. dom I ) |
|
| 8 | wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 9 | wlkp1.n | |- N = ( # ` F ) |
|
| 10 | wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
|
| 11 | wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
|
| 12 | wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
|
| 13 | wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
|
| 14 | wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
|
| 15 | wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem5 | |- ( ph -> A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) ) |
| 17 | elfzofz | |- ( k e. ( 0 ..^ N ) -> k e. ( 0 ... N ) ) |
|
| 18 | 17 | adantl | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ( 0 ... N ) ) |
| 19 | fveq2 | |- ( x = k -> ( Q ` x ) = ( Q ` k ) ) |
|
| 20 | fveq2 | |- ( x = k -> ( P ` x ) = ( P ` k ) ) |
|
| 21 | 19 20 | eqeq12d | |- ( x = k -> ( ( Q ` x ) = ( P ` x ) <-> ( Q ` k ) = ( P ` k ) ) ) |
| 22 | 21 | rspcv | |- ( k e. ( 0 ... N ) -> ( A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) -> ( Q ` k ) = ( P ` k ) ) ) |
| 23 | 18 22 | syl | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) -> ( Q ` k ) = ( P ` k ) ) ) |
| 24 | 23 | imp | |- ( ( ( ph /\ k e. ( 0 ..^ N ) ) /\ A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) ) -> ( Q ` k ) = ( P ` k ) ) |
| 25 | fzofzp1 | |- ( k e. ( 0 ..^ N ) -> ( k + 1 ) e. ( 0 ... N ) ) |
|
| 26 | 25 | adantl | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) e. ( 0 ... N ) ) |
| 27 | fveq2 | |- ( x = ( k + 1 ) -> ( Q ` x ) = ( Q ` ( k + 1 ) ) ) |
|
| 28 | fveq2 | |- ( x = ( k + 1 ) -> ( P ` x ) = ( P ` ( k + 1 ) ) ) |
|
| 29 | 27 28 | eqeq12d | |- ( x = ( k + 1 ) -> ( ( Q ` x ) = ( P ` x ) <-> ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) ) |
| 30 | 29 | rspcv | |- ( ( k + 1 ) e. ( 0 ... N ) -> ( A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) -> ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) ) |
| 31 | 26 30 | syl | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) -> ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) ) |
| 32 | 31 | imp | |- ( ( ( ph /\ k e. ( 0 ..^ N ) ) /\ A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) ) -> ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) ) |
| 33 | 12 | adantr | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
| 34 | 13 | fveq1i | |- ( H ` k ) = ( ( F u. { <. N , B >. } ) ` k ) |
| 35 | fzonel | |- -. N e. ( 0 ..^ N ) |
|
| 36 | eleq1 | |- ( N = k -> ( N e. ( 0 ..^ N ) <-> k e. ( 0 ..^ N ) ) ) |
|
| 37 | 35 36 | mtbii | |- ( N = k -> -. k e. ( 0 ..^ N ) ) |
| 38 | 37 | a1i | |- ( ph -> ( N = k -> -. k e. ( 0 ..^ N ) ) ) |
| 39 | 38 | con2d | |- ( ph -> ( k e. ( 0 ..^ N ) -> -. N = k ) ) |
| 40 | 39 | imp | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> -. N = k ) |
| 41 | 40 | neqned | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> N =/= k ) |
| 42 | fvunsn | |- ( N =/= k -> ( ( F u. { <. N , B >. } ) ` k ) = ( F ` k ) ) |
|
| 43 | 41 42 | syl | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( F u. { <. N , B >. } ) ` k ) = ( F ` k ) ) |
| 44 | 34 43 | eqtrid | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( H ` k ) = ( F ` k ) ) |
| 45 | 33 44 | fveq12d | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( iEdg ` S ) ` ( H ` k ) ) = ( ( I u. { <. B , E >. } ) ` ( F ` k ) ) ) |
| 46 | 9 | oveq2i | |- ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) |
| 47 | 46 | eleq2i | |- ( k e. ( 0 ..^ N ) <-> k e. ( 0 ..^ ( # ` F ) ) ) |
| 48 | 2 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 49 | 8 48 | syl | |- ( ph -> F e. Word dom I ) |
| 50 | wrdsymbcl | |- ( ( F e. Word dom I /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` k ) e. dom I ) |
|
| 51 | 50 | ex | |- ( F e. Word dom I -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( F ` k ) e. dom I ) ) |
| 52 | 49 51 | syl | |- ( ph -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( F ` k ) e. dom I ) ) |
| 53 | 47 52 | biimtrid | |- ( ph -> ( k e. ( 0 ..^ N ) -> ( F ` k ) e. dom I ) ) |
| 54 | 53 | imp | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( F ` k ) e. dom I ) |
| 55 | eleq1 | |- ( B = ( F ` k ) -> ( B e. dom I <-> ( F ` k ) e. dom I ) ) |
|
| 56 | 54 55 | syl5ibrcom | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( B = ( F ` k ) -> B e. dom I ) ) |
| 57 | 56 | con3d | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( -. B e. dom I -> -. B = ( F ` k ) ) ) |
| 58 | 57 | ex | |- ( ph -> ( k e. ( 0 ..^ N ) -> ( -. B e. dom I -> -. B = ( F ` k ) ) ) ) |
| 59 | 7 58 | mpid | |- ( ph -> ( k e. ( 0 ..^ N ) -> -. B = ( F ` k ) ) ) |
| 60 | 59 | imp | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> -. B = ( F ` k ) ) |
| 61 | 60 | neqned | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> B =/= ( F ` k ) ) |
| 62 | fvunsn | |- ( B =/= ( F ` k ) -> ( ( I u. { <. B , E >. } ) ` ( F ` k ) ) = ( I ` ( F ` k ) ) ) |
|
| 63 | 61 62 | syl | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( I u. { <. B , E >. } ) ` ( F ` k ) ) = ( I ` ( F ` k ) ) ) |
| 64 | 45 63 | eqtrd | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) |
| 65 | 64 | adantr | |- ( ( ( ph /\ k e. ( 0 ..^ N ) ) /\ A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) ) -> ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) |
| 66 | 24 32 65 | 3jca | |- ( ( ( ph /\ k e. ( 0 ..^ N ) ) /\ A. x e. ( 0 ... N ) ( Q ` x ) = ( P ` x ) ) -> ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) ) |
| 67 | 16 66 | mpidan | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) ) |
| 68 | 67 | ralrimiva | |- ( ph -> A. k e. ( 0 ..^ N ) ( ( Q ` k ) = ( P ` k ) /\ ( Q ` ( k + 1 ) ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` S ) ` ( H ` k ) ) = ( I ` ( F ` k ) ) ) ) |