This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | |- V = ( Vtx ` G ) |
|
| wlkp1.i | |- I = ( iEdg ` G ) |
||
| wlkp1.f | |- ( ph -> Fun I ) |
||
| wlkp1.a | |- ( ph -> I e. Fin ) |
||
| wlkp1.b | |- ( ph -> B e. W ) |
||
| wlkp1.c | |- ( ph -> C e. V ) |
||
| wlkp1.d | |- ( ph -> -. B e. dom I ) |
||
| wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkp1.n | |- N = ( # ` F ) |
||
| wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
||
| wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
||
| wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
||
| wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
||
| wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
||
| wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
||
| Assertion | wlkp1lem5 | |- ( ph -> A. k e. ( 0 ... N ) ( Q ` k ) = ( P ` k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkp1.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkp1.f | |- ( ph -> Fun I ) |
|
| 4 | wlkp1.a | |- ( ph -> I e. Fin ) |
|
| 5 | wlkp1.b | |- ( ph -> B e. W ) |
|
| 6 | wlkp1.c | |- ( ph -> C e. V ) |
|
| 7 | wlkp1.d | |- ( ph -> -. B e. dom I ) |
|
| 8 | wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 9 | wlkp1.n | |- N = ( # ` F ) |
|
| 10 | wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
|
| 11 | wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
|
| 12 | wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
|
| 13 | wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
|
| 14 | wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
|
| 15 | wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 16 | 14 | fveq1i | |- ( Q ` k ) = ( ( P u. { <. ( N + 1 ) , C >. } ) ` k ) |
| 17 | fzp1nel | |- -. ( N + 1 ) e. ( 0 ... N ) |
|
| 18 | eleq1 | |- ( k = ( N + 1 ) -> ( k e. ( 0 ... N ) <-> ( N + 1 ) e. ( 0 ... N ) ) ) |
|
| 19 | 18 | notbid | |- ( k = ( N + 1 ) -> ( -. k e. ( 0 ... N ) <-> -. ( N + 1 ) e. ( 0 ... N ) ) ) |
| 20 | 19 | eqcoms | |- ( ( N + 1 ) = k -> ( -. k e. ( 0 ... N ) <-> -. ( N + 1 ) e. ( 0 ... N ) ) ) |
| 21 | 17 20 | mpbiri | |- ( ( N + 1 ) = k -> -. k e. ( 0 ... N ) ) |
| 22 | 21 | a1i | |- ( ph -> ( ( N + 1 ) = k -> -. k e. ( 0 ... N ) ) ) |
| 23 | 22 | con2d | |- ( ph -> ( k e. ( 0 ... N ) -> -. ( N + 1 ) = k ) ) |
| 24 | 23 | imp | |- ( ( ph /\ k e. ( 0 ... N ) ) -> -. ( N + 1 ) = k ) |
| 25 | 24 | neqned | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( N + 1 ) =/= k ) |
| 26 | fvunsn | |- ( ( N + 1 ) =/= k -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` k ) = ( P ` k ) ) |
|
| 27 | 25 26 | syl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( P u. { <. ( N + 1 ) , C >. } ) ` k ) = ( P ` k ) ) |
| 28 | 16 27 | eqtrid | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( Q ` k ) = ( P ` k ) ) |
| 29 | 28 | ralrimiva | |- ( ph -> A. k e. ( 0 ... N ) ( Q ` k ) = ( P ` k ) ) |