This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by GG, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralsng.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | ralsng | |- ( A e. V -> ( A. x e. { A } ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsng.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | df-ral | |- ( A. x e. { A } ph <-> A. x ( x e. { A } -> ph ) ) |
|
| 3 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 4 | 3 | imbi1i | |- ( ( x e. { A } -> ph ) <-> ( x = A -> ph ) ) |
| 5 | 4 | albii | |- ( A. x ( x e. { A } -> ph ) <-> A. x ( x = A -> ph ) ) |
| 6 | 2 5 | bitri | |- ( A. x e. { A } ph <-> A. x ( x = A -> ph ) ) |
| 7 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 8 | 1 | pm5.74i | |- ( ( x = A -> ph ) <-> ( x = A -> ps ) ) |
| 9 | 8 | albii | |- ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) ) |
| 10 | 9 | a1i | |- ( E. x x = A -> ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) ) ) |
| 11 | 19.23v | |- ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) |
|
| 12 | 11 | a1i | |- ( E. x x = A -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) ) |
| 13 | pm5.5 | |- ( E. x x = A -> ( ( E. x x = A -> ps ) <-> ps ) ) |
|
| 14 | 10 12 13 | 3bitrd | |- ( E. x x = A -> ( A. x ( x = A -> ph ) <-> ps ) ) |
| 15 | 7 14 | syl | |- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) ) |
| 16 | 6 15 | bitrid | |- ( A e. V -> ( A. x e. { A } ph <-> ps ) ) |