This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first projection functor is a functor onto the left argument. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1stfcl.t | |- T = ( C Xc. D ) |
|
| 1stfcl.c | |- ( ph -> C e. Cat ) |
||
| 1stfcl.d | |- ( ph -> D e. Cat ) |
||
| 1stfcl.p | |- P = ( C 1stF D ) |
||
| Assertion | 1stfcl | |- ( ph -> P e. ( T Func C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfcl.t | |- T = ( C Xc. D ) |
|
| 2 | 1stfcl.c | |- ( ph -> C e. Cat ) |
|
| 3 | 1stfcl.d | |- ( ph -> D e. Cat ) |
|
| 4 | 1stfcl.p | |- P = ( C 1stF D ) |
|
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 7 | 1 5 6 | xpcbas | |- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` T ) |
| 8 | eqid | |- ( Hom ` T ) = ( Hom ` T ) |
|
| 9 | 1 7 8 2 3 4 | 1stfval | |- ( ph -> P = <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) >. ) |
| 10 | fo1st | |- 1st : _V -onto-> _V |
|
| 11 | fofun | |- ( 1st : _V -onto-> _V -> Fun 1st ) |
|
| 12 | 10 11 | ax-mp | |- Fun 1st |
| 13 | fvex | |- ( Base ` C ) e. _V |
|
| 14 | fvex | |- ( Base ` D ) e. _V |
|
| 15 | 13 14 | xpex | |- ( ( Base ` C ) X. ( Base ` D ) ) e. _V |
| 16 | resfunexg | |- ( ( Fun 1st /\ ( ( Base ` C ) X. ( Base ` D ) ) e. _V ) -> ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) e. _V ) |
|
| 17 | 12 15 16 | mp2an | |- ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) e. _V |
| 18 | 15 15 | mpoex | |- ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) e. _V |
| 19 | 17 18 | op2ndd | |- ( P = <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) >. -> ( 2nd ` P ) = ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) ) |
| 20 | 9 19 | syl | |- ( ph -> ( 2nd ` P ) = ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) ) |
| 21 | 20 | opeq2d | |- ( ph -> <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( 2nd ` P ) >. = <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) >. ) |
| 22 | 9 21 | eqtr4d | |- ( ph -> P = <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( 2nd ` P ) >. ) |
| 23 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 24 | eqid | |- ( Id ` T ) = ( Id ` T ) |
|
| 25 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 26 | eqid | |- ( comp ` T ) = ( comp ` T ) |
|
| 27 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 28 | 1 2 3 | xpccat | |- ( ph -> T e. Cat ) |
| 29 | f1stres | |- ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) : ( ( Base ` C ) X. ( Base ` D ) ) --> ( Base ` C ) |
|
| 30 | 29 | a1i | |- ( ph -> ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) : ( ( Base ` C ) X. ( Base ` D ) ) --> ( Base ` C ) ) |
| 31 | eqid | |- ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) = ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) |
|
| 32 | ovex | |- ( x ( Hom ` T ) y ) e. _V |
|
| 33 | resfunexg | |- ( ( Fun 1st /\ ( x ( Hom ` T ) y ) e. _V ) -> ( 1st |` ( x ( Hom ` T ) y ) ) e. _V ) |
|
| 34 | 12 32 33 | mp2an | |- ( 1st |` ( x ( Hom ` T ) y ) ) e. _V |
| 35 | 31 34 | fnmpoi | |- ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 36 | 20 | fneq1d | |- ( ph -> ( ( 2nd ` P ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) <-> ( x e. ( ( Base ` C ) X. ( Base ` D ) ) , y e. ( ( Base ` C ) X. ( Base ` D ) ) |-> ( 1st |` ( x ( Hom ` T ) y ) ) ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) ) ) |
| 37 | 35 36 | mpbiri | |- ( ph -> ( 2nd ` P ) Fn ( ( ( Base ` C ) X. ( Base ` D ) ) X. ( ( Base ` C ) X. ( Base ` D ) ) ) ) |
| 38 | f1stres | |- ( 1st |` ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) ) : ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) --> ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) |
|
| 39 | 2 | adantr | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> C e. Cat ) |
| 40 | 3 | adantr | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> D e. Cat ) |
| 41 | simprl | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 42 | simprr | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> y e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 43 | 1 7 8 39 40 4 41 42 | 1stf2 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( x ( 2nd ` P ) y ) = ( 1st |` ( x ( Hom ` T ) y ) ) ) |
| 44 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 45 | 1 7 23 44 8 41 42 | xpchom | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( x ( Hom ` T ) y ) = ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) ) |
| 46 | 45 | reseq2d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( 1st |` ( x ( Hom ` T ) y ) ) = ( 1st |` ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) ) ) |
| 47 | 43 46 | eqtrd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( x ( 2nd ` P ) y ) = ( 1st |` ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) ) ) |
| 48 | 47 | feq1d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( ( x ( 2nd ` P ) y ) : ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) --> ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) <-> ( 1st |` ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) ) : ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) --> ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) ) ) |
| 49 | 38 48 | mpbiri | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( x ( 2nd ` P ) y ) : ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) --> ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) ) |
| 50 | fvres | |- ( x e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) = ( 1st ` x ) ) |
|
| 51 | 50 | ad2antrl | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) = ( 1st ` x ) ) |
| 52 | fvres | |- ( y e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) = ( 1st ` y ) ) |
|
| 53 | 52 | ad2antll | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) = ( 1st ` y ) ) |
| 54 | 51 53 | oveq12d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) ( Hom ` C ) ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) ) |
| 55 | 45 54 | feq23d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( ( x ( 2nd ` P ) y ) : ( x ( Hom ` T ) y ) --> ( ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) ( Hom ` C ) ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) ) <-> ( x ( 2nd ` P ) y ) : ( ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) X. ( ( 2nd ` x ) ( Hom ` D ) ( 2nd ` y ) ) ) --> ( ( 1st ` x ) ( Hom ` C ) ( 1st ` y ) ) ) ) |
| 56 | 49 55 | mpbird | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) ) ) -> ( x ( 2nd ` P ) y ) : ( x ( Hom ` T ) y ) --> ( ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) ( Hom ` C ) ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) ) ) |
| 57 | 28 | adantr | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> T e. Cat ) |
| 58 | simpr | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 59 | 7 8 24 57 58 | catidcl | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( Id ` T ) ` x ) e. ( x ( Hom ` T ) x ) ) |
| 60 | 59 | fvresd | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( 1st |` ( x ( Hom ` T ) x ) ) ` ( ( Id ` T ) ` x ) ) = ( 1st ` ( ( Id ` T ) ` x ) ) ) |
| 61 | 1st2nd2 | |- ( x e. ( ( Base ` C ) X. ( Base ` D ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 62 | 61 | adantl | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 63 | 62 | fveq2d | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( Id ` T ) ` x ) = ( ( Id ` T ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 64 | 2 | adantr | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> C e. Cat ) |
| 65 | 3 | adantr | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> D e. Cat ) |
| 66 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 67 | xp1st | |- ( x e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
|
| 68 | 67 | adantl | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( 1st ` x ) e. ( Base ` C ) ) |
| 69 | xp2nd | |- ( x e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( 2nd ` x ) e. ( Base ` D ) ) |
|
| 70 | 69 | adantl | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( 2nd ` x ) e. ( Base ` D ) ) |
| 71 | 1 64 65 5 6 25 66 24 68 70 | xpcid | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( Id ` T ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) = <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` D ) ` ( 2nd ` x ) ) >. ) |
| 72 | 63 71 | eqtrd | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( Id ` T ) ` x ) = <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` D ) ` ( 2nd ` x ) ) >. ) |
| 73 | fvex | |- ( ( Id ` C ) ` ( 1st ` x ) ) e. _V |
|
| 74 | fvex | |- ( ( Id ` D ) ` ( 2nd ` x ) ) e. _V |
|
| 75 | 73 74 | op1std | |- ( ( ( Id ` T ) ` x ) = <. ( ( Id ` C ) ` ( 1st ` x ) ) , ( ( Id ` D ) ` ( 2nd ` x ) ) >. -> ( 1st ` ( ( Id ` T ) ` x ) ) = ( ( Id ` C ) ` ( 1st ` x ) ) ) |
| 76 | 72 75 | syl | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( 1st ` ( ( Id ` T ) ` x ) ) = ( ( Id ` C ) ` ( 1st ` x ) ) ) |
| 77 | 60 76 | eqtrd | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( 1st |` ( x ( Hom ` T ) x ) ) ` ( ( Id ` T ) ` x ) ) = ( ( Id ` C ) ` ( 1st ` x ) ) ) |
| 78 | 1 7 8 64 65 4 58 58 | 1stf2 | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( x ( 2nd ` P ) x ) = ( 1st |` ( x ( Hom ` T ) x ) ) ) |
| 79 | 78 | fveq1d | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( x ( 2nd ` P ) x ) ` ( ( Id ` T ) ` x ) ) = ( ( 1st |` ( x ( Hom ` T ) x ) ) ` ( ( Id ` T ) ` x ) ) ) |
| 80 | 50 | adantl | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) = ( 1st ` x ) ) |
| 81 | 80 | fveq2d | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( Id ` C ) ` ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) ) = ( ( Id ` C ) ` ( 1st ` x ) ) ) |
| 82 | 77 79 81 | 3eqtr4d | |- ( ( ph /\ x e. ( ( Base ` C ) X. ( Base ` D ) ) ) -> ( ( x ( 2nd ` P ) x ) ` ( ( Id ` T ) ` x ) ) = ( ( Id ` C ) ` ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) ) ) |
| 83 | 28 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> T e. Cat ) |
| 84 | simp21 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> x e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 85 | simp22 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> y e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 86 | simp23 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> z e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
|
| 87 | simp3l | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> f e. ( x ( Hom ` T ) y ) ) |
|
| 88 | simp3r | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> g e. ( y ( Hom ` T ) z ) ) |
|
| 89 | 7 8 26 83 84 85 86 87 88 | catcocl | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( g ( <. x , y >. ( comp ` T ) z ) f ) e. ( x ( Hom ` T ) z ) ) |
| 90 | 89 | fvresd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( 1st |` ( x ( Hom ` T ) z ) ) ` ( g ( <. x , y >. ( comp ` T ) z ) f ) ) = ( 1st ` ( g ( <. x , y >. ( comp ` T ) z ) f ) ) ) |
| 91 | 1 7 8 26 84 85 86 87 88 27 | xpcco1st | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( 1st ` ( g ( <. x , y >. ( comp ` T ) z ) f ) ) = ( ( 1st ` g ) ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` z ) ) ( 1st ` f ) ) ) |
| 92 | 90 91 | eqtrd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( 1st |` ( x ( Hom ` T ) z ) ) ` ( g ( <. x , y >. ( comp ` T ) z ) f ) ) = ( ( 1st ` g ) ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` z ) ) ( 1st ` f ) ) ) |
| 93 | 2 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> C e. Cat ) |
| 94 | 3 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> D e. Cat ) |
| 95 | 1 7 8 93 94 4 84 86 | 1stf2 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( x ( 2nd ` P ) z ) = ( 1st |` ( x ( Hom ` T ) z ) ) ) |
| 96 | 95 | fveq1d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( x ( 2nd ` P ) z ) ` ( g ( <. x , y >. ( comp ` T ) z ) f ) ) = ( ( 1st |` ( x ( Hom ` T ) z ) ) ` ( g ( <. x , y >. ( comp ` T ) z ) f ) ) ) |
| 97 | 84 | fvresd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) = ( 1st ` x ) ) |
| 98 | 85 | fvresd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) = ( 1st ` y ) ) |
| 99 | 97 98 | opeq12d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> <. ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) , ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) >. = <. ( 1st ` x ) , ( 1st ` y ) >. ) |
| 100 | 86 | fvresd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` z ) = ( 1st ` z ) ) |
| 101 | 99 100 | oveq12d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( <. ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) , ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) >. ( comp ` C ) ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` z ) ) = ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` z ) ) ) |
| 102 | 1 7 8 93 94 4 85 86 | 1stf2 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( y ( 2nd ` P ) z ) = ( 1st |` ( y ( Hom ` T ) z ) ) ) |
| 103 | 102 | fveq1d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( y ( 2nd ` P ) z ) ` g ) = ( ( 1st |` ( y ( Hom ` T ) z ) ) ` g ) ) |
| 104 | 88 | fvresd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( 1st |` ( y ( Hom ` T ) z ) ) ` g ) = ( 1st ` g ) ) |
| 105 | 103 104 | eqtrd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( y ( 2nd ` P ) z ) ` g ) = ( 1st ` g ) ) |
| 106 | 1 7 8 93 94 4 84 85 | 1stf2 | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( x ( 2nd ` P ) y ) = ( 1st |` ( x ( Hom ` T ) y ) ) ) |
| 107 | 106 | fveq1d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( x ( 2nd ` P ) y ) ` f ) = ( ( 1st |` ( x ( Hom ` T ) y ) ) ` f ) ) |
| 108 | 87 | fvresd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( 1st |` ( x ( Hom ` T ) y ) ) ` f ) = ( 1st ` f ) ) |
| 109 | 107 108 | eqtrd | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( x ( 2nd ` P ) y ) ` f ) = ( 1st ` f ) ) |
| 110 | 101 105 109 | oveq123d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( ( y ( 2nd ` P ) z ) ` g ) ( <. ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) , ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) >. ( comp ` C ) ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` z ) ) ( ( x ( 2nd ` P ) y ) ` f ) ) = ( ( 1st ` g ) ( <. ( 1st ` x ) , ( 1st ` y ) >. ( comp ` C ) ( 1st ` z ) ) ( 1st ` f ) ) ) |
| 111 | 92 96 110 | 3eqtr4d | |- ( ( ph /\ ( x e. ( ( Base ` C ) X. ( Base ` D ) ) /\ y e. ( ( Base ` C ) X. ( Base ` D ) ) /\ z e. ( ( Base ` C ) X. ( Base ` D ) ) ) /\ ( f e. ( x ( Hom ` T ) y ) /\ g e. ( y ( Hom ` T ) z ) ) ) -> ( ( x ( 2nd ` P ) z ) ` ( g ( <. x , y >. ( comp ` T ) z ) f ) ) = ( ( ( y ( 2nd ` P ) z ) ` g ) ( <. ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` x ) , ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` y ) >. ( comp ` C ) ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ` z ) ) ( ( x ( 2nd ` P ) y ) ` f ) ) ) |
| 112 | 7 5 8 23 24 25 26 27 28 2 30 37 56 82 111 | isfuncd | |- ( ph -> ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ( T Func C ) ( 2nd ` P ) ) |
| 113 | df-br | |- ( ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) ( T Func C ) ( 2nd ` P ) <-> <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( 2nd ` P ) >. e. ( T Func C ) ) |
|
| 114 | 112 113 | sylib | |- ( ph -> <. ( 1st |` ( ( Base ` C ) X. ( Base ` D ) ) ) , ( 2nd ` P ) >. e. ( T Func C ) ) |
| 115 | 22 114 | eqeltrd | |- ( ph -> P e. ( T Func C ) ) |