This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pairing of functors F : C --> D and G : C --> D is a functor <. F , G >. : C --> ( D X. E ) . (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prfcl.p | |- P = ( F pairF G ) |
|
| prfcl.t | |- T = ( D Xc. E ) |
||
| prfcl.c | |- ( ph -> F e. ( C Func D ) ) |
||
| prfcl.d | |- ( ph -> G e. ( C Func E ) ) |
||
| Assertion | prfcl | |- ( ph -> P e. ( C Func T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfcl.p | |- P = ( F pairF G ) |
|
| 2 | prfcl.t | |- T = ( D Xc. E ) |
|
| 3 | prfcl.c | |- ( ph -> F e. ( C Func D ) ) |
|
| 4 | prfcl.d | |- ( ph -> G e. ( C Func E ) ) |
|
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | 1 5 6 3 4 | prfval | |- ( ph -> P = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| 8 | fvex | |- ( Base ` C ) e. _V |
|
| 9 | 8 | mptex | |- ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) e. _V |
| 10 | 8 8 | mpoex | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) e. _V |
| 11 | 9 10 | op1std | |- ( P = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. -> ( 1st ` P ) = ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) |
| 12 | 7 11 | syl | |- ( ph -> ( 1st ` P ) = ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) |
| 13 | 9 10 | op2ndd | |- ( P = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. -> ( 2nd ` P ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) ) |
| 14 | 7 13 | syl | |- ( ph -> ( 2nd ` P ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) ) |
| 15 | 12 14 | opeq12d | |- ( ph -> <. ( 1st ` P ) , ( 2nd ` P ) >. = <. ( x e. ( Base ` C ) |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| 16 | 7 15 | eqtr4d | |- ( ph -> P = <. ( 1st ` P ) , ( 2nd ` P ) >. ) |
| 17 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 18 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 19 | 2 17 18 | xpcbas | |- ( ( Base ` D ) X. ( Base ` E ) ) = ( Base ` T ) |
| 20 | eqid | |- ( Hom ` T ) = ( Hom ` T ) |
|
| 21 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 22 | eqid | |- ( Id ` T ) = ( Id ` T ) |
|
| 23 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 24 | eqid | |- ( comp ` T ) = ( comp ` T ) |
|
| 25 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 26 | 3 25 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 27 | 26 | simpld | |- ( ph -> C e. Cat ) |
| 28 | 26 | simprd | |- ( ph -> D e. Cat ) |
| 29 | funcrcl | |- ( G e. ( C Func E ) -> ( C e. Cat /\ E e. Cat ) ) |
|
| 30 | 4 29 | syl | |- ( ph -> ( C e. Cat /\ E e. Cat ) ) |
| 31 | 30 | simprd | |- ( ph -> E e. Cat ) |
| 32 | 2 28 31 | xpccat | |- ( ph -> T e. Cat ) |
| 33 | relfunc | |- Rel ( C Func D ) |
|
| 34 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 35 | 33 3 34 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 36 | 5 17 35 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 37 | 36 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 38 | relfunc | |- Rel ( C Func E ) |
|
| 39 | 1st2ndbr | |- ( ( Rel ( C Func E ) /\ G e. ( C Func E ) ) -> ( 1st ` G ) ( C Func E ) ( 2nd ` G ) ) |
|
| 40 | 38 4 39 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func E ) ( 2nd ` G ) ) |
| 41 | 5 18 40 | funcf1 | |- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` E ) ) |
| 42 | 41 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` E ) ) |
| 43 | 37 42 | opelxpd | |- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. e. ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 44 | 12 43 | fmpt3d | |- ( ph -> ( 1st ` P ) : ( Base ` C ) --> ( ( Base ` D ) X. ( Base ` E ) ) ) |
| 45 | eqid | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) |
|
| 46 | ovex | |- ( x ( Hom ` C ) y ) e. _V |
|
| 47 | 46 | mptex | |- ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) e. _V |
| 48 | 45 47 | fnmpoi | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 49 | 14 | fneq1d | |- ( ph -> ( ( 2nd ` P ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 50 | 48 49 | mpbiri | |- ( ph -> ( 2nd ` P ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 51 | 14 | oveqd | |- ( ph -> ( x ( 2nd ` P ) y ) = ( x ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) y ) ) |
| 52 | 45 | ovmpt4g | |- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) e. _V ) -> ( x ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) y ) = ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) |
| 53 | 47 52 | mp3an3 | |- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) y ) = ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) |
| 54 | 51 53 | sylan9eq | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` P ) y ) = ( h e. ( x ( Hom ` C ) y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) |
| 55 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 56 | 35 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 57 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 58 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 59 | 5 6 55 56 57 58 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 60 | 59 | ffvelcdmda | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ h e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` F ) y ) ` h ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 61 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 62 | 40 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` G ) ( C Func E ) ( 2nd ` G ) ) |
| 63 | 5 6 61 62 57 58 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( Hom ` E ) ( ( 1st ` G ) ` y ) ) ) |
| 64 | 63 | ffvelcdmda | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ h e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` h ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` E ) ( ( 1st ` G ) ` y ) ) ) |
| 65 | 60 64 | opelxpd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ h e. ( x ( Hom ` C ) y ) ) -> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. e. ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` E ) ( ( 1st ` G ) ` y ) ) ) ) |
| 66 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F e. ( C Func D ) ) |
| 67 | 4 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> G e. ( C Func E ) ) |
| 68 | 1 5 6 66 67 57 | prf1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` P ) ` x ) = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) |
| 69 | 1 5 6 66 67 58 | prf1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` P ) ` y ) = <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ) |
| 70 | 68 69 | oveq12d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` P ) ` x ) ( Hom ` T ) ( ( 1st ` P ) ` y ) ) = ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( Hom ` T ) <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ) ) |
| 71 | 37 | adantrr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 72 | 42 | adantrr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` E ) ) |
| 73 | 36 | ffvelcdmda | |- ( ( ph /\ y e. ( Base ` C ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 74 | 73 | adantrl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 75 | 41 | ffvelcdmda | |- ( ( ph /\ y e. ( Base ` C ) ) -> ( ( 1st ` G ) ` y ) e. ( Base ` E ) ) |
| 76 | 75 | adantrl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` G ) ` y ) e. ( Base ` E ) ) |
| 77 | 2 17 18 55 61 71 72 74 76 20 | xpchom2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( Hom ` T ) <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ) = ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` E ) ( ( 1st ` G ) ` y ) ) ) ) |
| 78 | 70 77 | eqtrd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` P ) ` x ) ( Hom ` T ) ( ( 1st ` P ) ` y ) ) = ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` E ) ( ( 1st ` G ) ` y ) ) ) ) |
| 79 | 78 | adantr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ h e. ( x ( Hom ` C ) y ) ) -> ( ( ( 1st ` P ) ` x ) ( Hom ` T ) ( ( 1st ` P ) ` y ) ) = ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` E ) ( ( 1st ` G ) ` y ) ) ) ) |
| 80 | 65 79 | eleqtrrd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ h e. ( x ( Hom ` C ) y ) ) -> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. e. ( ( ( 1st ` P ) ` x ) ( Hom ` T ) ( ( 1st ` P ) ` y ) ) ) |
| 81 | 54 80 | fmpt3d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` P ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` P ) ` x ) ( Hom ` T ) ( ( 1st ` P ) ` y ) ) ) |
| 82 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 83 | 35 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 84 | simpr | |- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 85 | 5 21 82 83 84 | funcid | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) |
| 86 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 87 | 40 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` G ) ( C Func E ) ( 2nd ` G ) ) |
| 88 | 5 21 86 87 84 | funcid | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` x ) ) ) |
| 89 | 85 88 | opeq12d | |- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) , ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) >. = <. ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) , ( ( Id ` E ) ` ( ( 1st ` G ) ` x ) ) >. ) |
| 90 | 3 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> F e. ( C Func D ) ) |
| 91 | 4 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> G e. ( C Func E ) ) |
| 92 | 27 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
| 93 | 5 6 21 92 84 | catidcl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 94 | 1 5 6 90 91 84 84 93 | prf2 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` P ) x ) ` ( ( Id ` C ) ` x ) ) = <. ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) , ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) >. ) |
| 95 | 1 5 6 90 91 84 | prf1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` P ) ` x ) = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) |
| 96 | 95 | fveq2d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` T ) ` ( ( 1st ` P ) ` x ) ) = ( ( Id ` T ) ` <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) |
| 97 | 28 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 98 | 31 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> E e. Cat ) |
| 99 | 2 97 98 17 18 82 86 22 37 42 | xpcid | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` T ) ` <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) = <. ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) , ( ( Id ` E ) ` ( ( 1st ` G ) ` x ) ) >. ) |
| 100 | 96 99 | eqtrd | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` T ) ` ( ( 1st ` P ) ` x ) ) = <. ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) , ( ( Id ` E ) ` ( ( 1st ` G ) ` x ) ) >. ) |
| 101 | 89 94 100 | 3eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` P ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` T ) ` ( ( 1st ` P ) ` x ) ) ) |
| 102 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 103 | 35 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 104 | simp21 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> x e. ( Base ` C ) ) |
|
| 105 | simp22 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> y e. ( Base ` C ) ) |
|
| 106 | simp23 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> z e. ( Base ` C ) ) |
|
| 107 | simp3l | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 108 | simp3r | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> g e. ( y ( Hom ` C ) z ) ) |
|
| 109 | 5 6 23 102 103 104 105 106 107 108 | funcco | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 110 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 111 | 4 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> G e. ( C Func E ) ) |
| 112 | 38 111 39 | sylancr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` G ) ( C Func E ) ( 2nd ` G ) ) |
| 113 | 5 6 23 110 112 104 105 106 107 108 | funcco | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` G ) z ) ` g ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` E ) ( ( 1st ` G ) ` z ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) ) |
| 114 | 109 113 | opeq12d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> <. ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) , ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) >. = <. ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) , ( ( ( y ( 2nd ` G ) z ) ` g ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` E ) ( ( 1st ` G ) ` z ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) >. ) |
| 115 | 3 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> F e. ( C Func D ) ) |
| 116 | 27 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> C e. Cat ) |
| 117 | 5 6 23 116 104 105 106 107 108 | catcocl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 118 | 1 5 6 115 111 104 106 117 | prf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` P ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = <. ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) , ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) >. ) |
| 119 | 1 5 6 115 111 104 | prf1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` P ) ` x ) = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) |
| 120 | 1 5 6 115 111 105 | prf1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` P ) ` y ) = <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ) |
| 121 | 119 120 | opeq12d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> <. ( ( 1st ` P ) ` x ) , ( ( 1st ` P ) ` y ) >. = <. <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. , <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. >. ) |
| 122 | 1 5 6 115 111 106 | prf1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` P ) ` z ) = <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ) |
| 123 | 121 122 | oveq12d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( <. ( ( 1st ` P ) ` x ) , ( ( 1st ` P ) ` y ) >. ( comp ` T ) ( ( 1st ` P ) ` z ) ) = ( <. <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. , <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. >. ( comp ` T ) <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ) ) |
| 124 | 1 5 6 115 111 105 106 108 | prf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` P ) z ) ` g ) = <. ( ( y ( 2nd ` F ) z ) ` g ) , ( ( y ( 2nd ` G ) z ) ` g ) >. ) |
| 125 | 1 5 6 115 111 104 105 107 | prf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` P ) y ) ` f ) = <. ( ( x ( 2nd ` F ) y ) ` f ) , ( ( x ( 2nd ` G ) y ) ` f ) >. ) |
| 126 | 123 124 125 | oveq123d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` P ) z ) ` g ) ( <. ( ( 1st ` P ) ` x ) , ( ( 1st ` P ) ` y ) >. ( comp ` T ) ( ( 1st ` P ) ` z ) ) ( ( x ( 2nd ` P ) y ) ` f ) ) = ( <. ( ( y ( 2nd ` F ) z ) ` g ) , ( ( y ( 2nd ` G ) z ) ` g ) >. ( <. <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. , <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. >. ( comp ` T ) <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ) <. ( ( x ( 2nd ` F ) y ) ` f ) , ( ( x ( 2nd ` G ) y ) ` f ) >. ) ) |
| 127 | 36 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 128 | 127 104 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 129 | 41 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` E ) ) |
| 130 | 129 104 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` E ) ) |
| 131 | 127 105 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 132 | 129 105 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` G ) ` y ) e. ( Base ` E ) ) |
| 133 | 127 106 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` F ) ` z ) e. ( Base ` D ) ) |
| 134 | 129 106 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` G ) ` z ) e. ( Base ` E ) ) |
| 135 | 5 6 55 103 104 105 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 136 | 135 107 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 137 | 5 6 61 112 104 105 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( Hom ` E ) ( ( 1st ` G ) ` y ) ) ) |
| 138 | 137 107 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` G ) y ) ` f ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` E ) ( ( 1st ` G ) ` y ) ) ) |
| 139 | 5 6 55 103 105 106 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( y ( 2nd ` F ) z ) : ( y ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 140 | 139 108 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` F ) z ) ` g ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 141 | 5 6 61 112 105 106 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( y ( 2nd ` G ) z ) : ( y ( Hom ` C ) z ) --> ( ( ( 1st ` G ) ` y ) ( Hom ` E ) ( ( 1st ` G ) ` z ) ) ) |
| 142 | 141 108 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` G ) z ) ` g ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` E ) ( ( 1st ` G ) ` z ) ) ) |
| 143 | 2 17 18 55 61 128 130 131 132 102 110 24 133 134 136 138 140 142 | xpcco2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( <. ( ( y ( 2nd ` F ) z ) ` g ) , ( ( y ( 2nd ` G ) z ) ` g ) >. ( <. <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. , <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. >. ( comp ` T ) <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ) <. ( ( x ( 2nd ` F ) y ) ` f ) , ( ( x ( 2nd ` G ) y ) ` f ) >. ) = <. ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) , ( ( ( y ( 2nd ` G ) z ) ` g ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` E ) ( ( 1st ` G ) ` z ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) >. ) |
| 144 | 126 143 | eqtrd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` P ) z ) ` g ) ( <. ( ( 1st ` P ) ` x ) , ( ( 1st ` P ) ` y ) >. ( comp ` T ) ( ( 1st ` P ) ` z ) ) ( ( x ( 2nd ` P ) y ) ` f ) ) = <. ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) , ( ( ( y ( 2nd ` G ) z ) ` g ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` E ) ( ( 1st ` G ) ` z ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) >. ) |
| 145 | 114 118 144 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` P ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` P ) z ) ` g ) ( <. ( ( 1st ` P ) ` x ) , ( ( 1st ` P ) ` y ) >. ( comp ` T ) ( ( 1st ` P ) ` z ) ) ( ( x ( 2nd ` P ) y ) ` f ) ) ) |
| 146 | 5 19 6 20 21 22 23 24 27 32 44 50 81 101 145 | isfuncd | |- ( ph -> ( 1st ` P ) ( C Func T ) ( 2nd ` P ) ) |
| 147 | df-br | |- ( ( 1st ` P ) ( C Func T ) ( 2nd ` P ) <-> <. ( 1st ` P ) , ( 2nd ` P ) >. e. ( C Func T ) ) |
|
| 148 | 146 147 | sylib | |- ( ph -> <. ( 1st ` P ) , ( 2nd ` P ) >. e. ( C Func T ) ) |
| 149 | 16 148 | eqeltrd | |- ( ph -> P e. ( C Func T ) ) |