This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofuval.b | |- B = ( Base ` C ) |
|
| cofuval.f | |- ( ph -> F e. ( C Func D ) ) |
||
| cofuval.g | |- ( ph -> G e. ( D Func E ) ) |
||
| cofu2nd.x | |- ( ph -> X e. B ) |
||
| cofu2nd.y | |- ( ph -> Y e. B ) |
||
| cofu2.h | |- H = ( Hom ` C ) |
||
| cofu2.y | |- ( ph -> R e. ( X H Y ) ) |
||
| Assertion | cofu2 | |- ( ph -> ( ( X ( 2nd ` ( G o.func F ) ) Y ) ` R ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuval.b | |- B = ( Base ` C ) |
|
| 2 | cofuval.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 3 | cofuval.g | |- ( ph -> G e. ( D Func E ) ) |
|
| 4 | cofu2nd.x | |- ( ph -> X e. B ) |
|
| 5 | cofu2nd.y | |- ( ph -> Y e. B ) |
|
| 6 | cofu2.h | |- H = ( Hom ` C ) |
|
| 7 | cofu2.y | |- ( ph -> R e. ( X H Y ) ) |
|
| 8 | 1 2 3 4 5 | cofu2nd | |- ( ph -> ( X ( 2nd ` ( G o.func F ) ) Y ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) o. ( X ( 2nd ` F ) Y ) ) ) |
| 9 | 8 | fveq1d | |- ( ph -> ( ( X ( 2nd ` ( G o.func F ) ) Y ) ` R ) = ( ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) o. ( X ( 2nd ` F ) Y ) ) ` R ) ) |
| 10 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 11 | relfunc | |- Rel ( C Func D ) |
|
| 12 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 13 | 11 2 12 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 14 | 1 6 10 13 4 5 | funcf2 | |- ( ph -> ( X ( 2nd ` F ) Y ) : ( X H Y ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` D ) ( ( 1st ` F ) ` Y ) ) ) |
| 15 | fvco3 | |- ( ( ( X ( 2nd ` F ) Y ) : ( X H Y ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` D ) ( ( 1st ` F ) ` Y ) ) /\ R e. ( X H Y ) ) -> ( ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) o. ( X ( 2nd ` F ) Y ) ) ` R ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) ) |
|
| 16 | 14 7 15 | syl2anc | |- ( ph -> ( ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) o. ( X ( 2nd ` F ) Y ) ) ` R ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) ) |
| 17 | 9 16 | eqtrd | |- ( ph -> ( ( X ( 2nd ` ( G o.func F ) ) Y ) ` R ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) ) |