This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prfval.k | |- P = ( F pairF G ) |
|
| prfval.b | |- B = ( Base ` C ) |
||
| prfval.h | |- H = ( Hom ` C ) |
||
| prfval.c | |- ( ph -> F e. ( C Func D ) ) |
||
| prfval.d | |- ( ph -> G e. ( C Func E ) ) |
||
| prf1.x | |- ( ph -> X e. B ) |
||
| prf2.y | |- ( ph -> Y e. B ) |
||
| prf2.k | |- ( ph -> K e. ( X H Y ) ) |
||
| Assertion | prf2 | |- ( ph -> ( ( X ( 2nd ` P ) Y ) ` K ) = <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfval.k | |- P = ( F pairF G ) |
|
| 2 | prfval.b | |- B = ( Base ` C ) |
|
| 3 | prfval.h | |- H = ( Hom ` C ) |
|
| 4 | prfval.c | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | prfval.d | |- ( ph -> G e. ( C Func E ) ) |
|
| 6 | prf1.x | |- ( ph -> X e. B ) |
|
| 7 | prf2.y | |- ( ph -> Y e. B ) |
|
| 8 | prf2.k | |- ( ph -> K e. ( X H Y ) ) |
|
| 9 | 1 2 3 4 5 6 7 | prf2fval | |- ( ph -> ( X ( 2nd ` P ) Y ) = ( h e. ( X H Y ) |-> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. ) ) |
| 10 | simpr | |- ( ( ph /\ h = K ) -> h = K ) |
|
| 11 | 10 | fveq2d | |- ( ( ph /\ h = K ) -> ( ( X ( 2nd ` F ) Y ) ` h ) = ( ( X ( 2nd ` F ) Y ) ` K ) ) |
| 12 | 10 | fveq2d | |- ( ( ph /\ h = K ) -> ( ( X ( 2nd ` G ) Y ) ` h ) = ( ( X ( 2nd ` G ) Y ) ` K ) ) |
| 13 | 11 12 | opeq12d | |- ( ( ph /\ h = K ) -> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. = <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. ) |
| 14 | opex | |- <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. e. _V |
|
| 15 | 14 | a1i | |- ( ph -> <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. e. _V ) |
| 16 | 9 13 8 15 | fvmptd | |- ( ph -> ( ( X ( 2nd ` P ) Y ) ` K ) = <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. ) |