This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two functors is a functor. Proposition 3.23 of Adamek p. 33. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofucl.f | |- ( ph -> F e. ( C Func D ) ) |
|
| cofucl.g | |- ( ph -> G e. ( D Func E ) ) |
||
| Assertion | cofucl | |- ( ph -> ( G o.func F ) e. ( C Func E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofucl.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 2 | cofucl.g | |- ( ph -> G e. ( D Func E ) ) |
|
| 3 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 4 | 3 1 2 | cofuval | |- ( ph -> ( G o.func F ) = <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
| 5 | 3 1 2 | cofu1st | |- ( ph -> ( 1st ` ( G o.func F ) ) = ( ( 1st ` G ) o. ( 1st ` F ) ) ) |
| 6 | 4 | fveq2d | |- ( ph -> ( 2nd ` ( G o.func F ) ) = ( 2nd ` <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) ) |
| 7 | fvex | |- ( 1st ` G ) e. _V |
|
| 8 | fvex | |- ( 1st ` F ) e. _V |
|
| 9 | 7 8 | coex | |- ( ( 1st ` G ) o. ( 1st ` F ) ) e. _V |
| 10 | fvex | |- ( Base ` C ) e. _V |
|
| 11 | 10 10 | mpoex | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) e. _V |
| 12 | 9 11 | op2nd | |- ( 2nd ` <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
| 13 | 6 12 | eqtrdi | |- ( ph -> ( 2nd ` ( G o.func F ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) ) |
| 14 | 5 13 | opeq12d | |- ( ph -> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. = <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
| 15 | 4 14 | eqtr4d | |- ( ph -> ( G o.func F ) = <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. ) |
| 16 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 17 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 18 | relfunc | |- Rel ( D Func E ) |
|
| 19 | 1st2ndbr | |- ( ( Rel ( D Func E ) /\ G e. ( D Func E ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
|
| 20 | 18 2 19 | sylancr | |- ( ph -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 21 | 16 17 20 | funcf1 | |- ( ph -> ( 1st ` G ) : ( Base ` D ) --> ( Base ` E ) ) |
| 22 | relfunc | |- Rel ( C Func D ) |
|
| 23 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 24 | 22 1 23 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 25 | 3 16 24 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 26 | fco | |- ( ( ( 1st ` G ) : ( Base ` D ) --> ( Base ` E ) /\ ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) -> ( ( 1st ` G ) o. ( 1st ` F ) ) : ( Base ` C ) --> ( Base ` E ) ) |
|
| 27 | 21 25 26 | syl2anc | |- ( ph -> ( ( 1st ` G ) o. ( 1st ` F ) ) : ( Base ` C ) --> ( Base ` E ) ) |
| 28 | 5 | feq1d | |- ( ph -> ( ( 1st ` ( G o.func F ) ) : ( Base ` C ) --> ( Base ` E ) <-> ( ( 1st ` G ) o. ( 1st ` F ) ) : ( Base ` C ) --> ( Base ` E ) ) ) |
| 29 | 27 28 | mpbird | |- ( ph -> ( 1st ` ( G o.func F ) ) : ( Base ` C ) --> ( Base ` E ) ) |
| 30 | eqid | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
|
| 31 | ovex | |- ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) e. _V |
|
| 32 | ovex | |- ( x ( 2nd ` F ) y ) e. _V |
|
| 33 | 31 32 | coex | |- ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) e. _V |
| 34 | 30 33 | fnmpoi | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 35 | 13 | fneq1d | |- ( ph -> ( ( 2nd ` ( G o.func F ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 36 | 34 35 | mpbiri | |- ( ph -> ( 2nd ` ( G o.func F ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 37 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 38 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 39 | 20 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 40 | 25 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 41 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 42 | 40 41 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 43 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 44 | 40 43 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 45 | 16 37 38 39 42 44 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 46 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 47 | 24 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 48 | 3 46 37 47 41 43 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 49 | fco | |- ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) /\ ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
|
| 50 | 45 48 49 | syl2anc | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 51 | ovex | |- ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) e. _V |
|
| 52 | ovex | |- ( x ( Hom ` C ) y ) e. _V |
|
| 53 | 51 52 | elmap | |- ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) e. ( ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ^m ( x ( Hom ` C ) y ) ) <-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 54 | 50 53 | sylibr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) e. ( ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 55 | 1 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F e. ( C Func D ) ) |
| 56 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> G e. ( D Func E ) ) |
| 57 | 3 55 56 41 43 | cofu2nd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
| 58 | 3 55 56 41 | cofu1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
| 59 | 3 55 56 43 | cofu1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` y ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) |
| 60 | 58 59 | oveq12d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) = ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 61 | 60 | oveq1d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) = ( ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 62 | 54 57 61 | 3eltr4d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 63 | 62 | ralrimivva | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 64 | fveq2 | |- ( z = <. x , y >. -> ( ( 2nd ` ( G o.func F ) ) ` z ) = ( ( 2nd ` ( G o.func F ) ) ` <. x , y >. ) ) |
|
| 65 | df-ov | |- ( x ( 2nd ` ( G o.func F ) ) y ) = ( ( 2nd ` ( G o.func F ) ) ` <. x , y >. ) |
|
| 66 | 64 65 | eqtr4di | |- ( z = <. x , y >. -> ( ( 2nd ` ( G o.func F ) ) ` z ) = ( x ( 2nd ` ( G o.func F ) ) y ) ) |
| 67 | vex | |- x e. _V |
|
| 68 | vex | |- y e. _V |
|
| 69 | 67 68 | op1std | |- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 70 | 69 | fveq2d | |- ( z = <. x , y >. -> ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) = ( ( 1st ` ( G o.func F ) ) ` x ) ) |
| 71 | 67 68 | op2ndd | |- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 72 | 71 | fveq2d | |- ( z = <. x , y >. -> ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) = ( ( 1st ` ( G o.func F ) ) ` y ) ) |
| 73 | 70 72 | oveq12d | |- ( z = <. x , y >. -> ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) = ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ) |
| 74 | fveq2 | |- ( z = <. x , y >. -> ( ( Hom ` C ) ` z ) = ( ( Hom ` C ) ` <. x , y >. ) ) |
|
| 75 | df-ov | |- ( x ( Hom ` C ) y ) = ( ( Hom ` C ) ` <. x , y >. ) |
|
| 76 | 74 75 | eqtr4di | |- ( z = <. x , y >. -> ( ( Hom ` C ) ` z ) = ( x ( Hom ` C ) y ) ) |
| 77 | 73 76 | oveq12d | |- ( z = <. x , y >. -> ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) = ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 78 | 66 77 | eleq12d | |- ( z = <. x , y >. -> ( ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) ) |
| 79 | 78 | ralxp | |- ( A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ^m ( x ( Hom ` C ) y ) ) ) |
| 80 | 63 79 | sylibr | |- ( ph -> A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 81 | fvex | |- ( 2nd ` ( G o.func F ) ) e. _V |
|
| 82 | 81 | elixp | |- ( ( 2nd ` ( G o.func F ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( ( 2nd ` ( G o.func F ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ A. z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( 2nd ` ( G o.func F ) ) ` z ) e. ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) ) |
| 83 | 36 80 82 | sylanbrc | |- ( ph -> ( 2nd ` ( G o.func F ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) ) |
| 84 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 85 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 86 | 24 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 87 | simpr | |- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 88 | 3 84 85 86 87 | funcid | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) |
| 89 | 88 | fveq2d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 90 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 91 | 20 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 92 | 25 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 93 | 16 85 90 91 92 | funcid | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 94 | 89 93 | eqtrd | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 95 | 1 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> F e. ( C Func D ) ) |
| 96 | 2 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> G e. ( D Func E ) ) |
| 97 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 98 | 1 97 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 99 | 98 | simpld | |- ( ph -> C e. Cat ) |
| 100 | 99 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
| 101 | 3 46 84 100 87 | catidcl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 102 | 3 95 96 87 87 46 101 | cofu2 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` x ) ) ` ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) ) |
| 103 | 3 95 96 87 | cofu1 | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
| 104 | 103 | fveq2d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) ) |
| 105 | 94 102 104 | 3eqtr4d | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) ) |
| 106 | 86 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 107 | simplr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> x e. ( Base ` C ) ) |
|
| 108 | simprlr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> z e. ( Base ` C ) ) |
|
| 109 | 3 46 37 106 107 108 | funcf2 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( x ( 2nd ` F ) z ) : ( x ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 110 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 111 | 100 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> C e. Cat ) |
| 112 | simprll | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> y e. ( Base ` C ) ) |
|
| 113 | simprrl | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 114 | simprrr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> g e. ( y ( Hom ` C ) z ) ) |
|
| 115 | 3 46 110 111 107 112 108 113 114 | catcocl | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 116 | fvco3 | |- ( ( ( x ( 2nd ` F ) z ) : ( x ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
|
| 117 | 109 115 116 | syl2anc | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
| 118 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 119 | 3 46 110 118 106 107 112 108 113 114 | funcco | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 120 | 119 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 121 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 122 | 91 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( 1st ` G ) ( D Func E ) ( 2nd ` G ) ) |
| 123 | 92 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 124 | 25 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 125 | 124 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 126 | 125 112 | ffvelcdmd | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 127 | 125 108 | ffvelcdmd | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` F ) ` z ) e. ( Base ` D ) ) |
| 128 | 3 46 37 106 107 112 | funcf2 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 129 | 128 113 | ffvelcdmd | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 130 | 3 46 37 106 112 108 | funcf2 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( y ( 2nd ` F ) z ) : ( y ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 131 | 130 114 | ffvelcdmd | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( y ( 2nd ` F ) z ) ` g ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 132 | 16 37 118 121 122 123 126 127 129 131 | funcco | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) = ( ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 133 | 117 120 132 | 3eqtrd | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 134 | 95 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> F e. ( C Func D ) ) |
| 135 | 96 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> G e. ( D Func E ) ) |
| 136 | 3 134 135 107 108 | cofu2nd | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) z ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ) |
| 137 | 136 | fveq1d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) o. ( x ( 2nd ` F ) z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
| 138 | 103 | adantr | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
| 139 | 3 134 135 112 | cofu1 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` y ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) |
| 140 | 138 139 | opeq12d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. = <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ) |
| 141 | 3 134 135 108 | cofu1 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` z ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) |
| 142 | 140 141 | oveq12d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) = ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ) |
| 143 | 3 134 135 112 108 46 114 | cofu2 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) = ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ) |
| 144 | 3 134 135 107 112 46 113 | cofu2 | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 145 | 142 143 144 | oveq123d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) = ( ( ( ( ( 1st ` F ) ` y ) ( 2nd ` G ) ( ( 1st ` F ) ` z ) ) ` ( ( y ( 2nd ` F ) z ) ` g ) ) ( <. ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) , ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) >. ( comp ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` z ) ) ) ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) ` ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 146 | 133 137 145 | 3eqtr4d | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
| 147 | 146 | anassrs | |- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
| 148 | 147 | ralrimivva | |- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) -> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
| 149 | 148 | ralrimivva | |- ( ( ph /\ x e. ( Base ` C ) ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) |
| 150 | 105 149 | jca | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) ) |
| 151 | 150 | ralrimiva | |- ( ph -> A. x e. ( Base ` C ) ( ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) ) |
| 152 | funcrcl | |- ( G e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
|
| 153 | 2 152 | syl | |- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 154 | 153 | simprd | |- ( ph -> E e. Cat ) |
| 155 | 3 17 46 38 84 90 110 121 99 154 | isfunc | |- ( ph -> ( ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) <-> ( ( 1st ` ( G o.func F ) ) : ( Base ` C ) --> ( Base ` E ) /\ ( 2nd ` ( G o.func F ) ) e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( ( 1st ` ( G o.func F ) ) ` ( 1st ` z ) ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) /\ A. x e. ( Base ` C ) ( ( ( x ( 2nd ` ( G o.func F ) ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` E ) ` ( ( 1st ` ( G o.func F ) ) ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( x ( 2nd ` ( G o.func F ) ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` ( G o.func F ) ) z ) ` g ) ( <. ( ( 1st ` ( G o.func F ) ) ` x ) , ( ( 1st ` ( G o.func F ) ) ` y ) >. ( comp ` E ) ( ( 1st ` ( G o.func F ) ) ` z ) ) ( ( x ( 2nd ` ( G o.func F ) ) y ) ` f ) ) ) ) ) ) |
| 156 | 29 83 151 155 | mpbir3and | |- ( ph -> ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) ) |
| 157 | df-br | |- ( ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) <-> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Func E ) ) |
|
| 158 | 156 157 | sylib | |- ( ph -> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Func E ) ) |
| 159 | 15 158 | eqeltrd | |- ( ph -> ( G o.func F ) e. ( C Func E ) ) |