This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the uncurry functor on a morphism. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uncfval.g | ⊢ 𝐹 = ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) | |
| uncfval.c | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| uncfval.d | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | ||
| uncfval.f | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) | ||
| uncf1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| uncf1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| uncf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| uncf1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| uncf2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| uncf2.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| uncf2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) | ||
| uncf2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | ||
| uncf2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑍 ) ) | ||
| uncf2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 𝑌 𝐽 𝑊 ) ) | ||
| Assertion | uncf2 | ⊢ ( 𝜑 → ( 𝑅 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑍 , 𝑊 〉 ) 𝑆 ) = ( ( ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) ‘ 𝑊 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑌 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑊 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) ) ‘ 𝑊 ) ) ( ( 𝑌 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑊 ) ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncfval.g | ⊢ 𝐹 = ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) | |
| 2 | uncfval.c | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 3 | uncfval.d | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | |
| 4 | uncfval.f | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) | |
| 5 | uncf1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 6 | uncf1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 7 | uncf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | uncf1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | uncf2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 10 | uncf2.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 11 | uncf2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) | |
| 12 | uncf2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | |
| 13 | uncf2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑍 ) ) | |
| 14 | uncf2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 𝑌 𝐽 𝑊 ) ) | |
| 15 | 1 2 3 4 | uncfval | ⊢ ( 𝜑 → 𝐹 = ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) |
| 16 | 15 | fveq2d | ⊢ ( 𝜑 → ( 2nd ‘ 𝐹 ) = ( 2nd ‘ ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) ) |
| 17 | 16 | oveqd | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑍 , 𝑊 〉 ) = ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) 〈 𝑍 , 𝑊 〉 ) ) |
| 18 | 17 | oveqd | ⊢ ( 𝜑 → ( 𝑅 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑍 , 𝑊 〉 ) 𝑆 ) = ( 𝑅 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) 〈 𝑍 , 𝑊 〉 ) 𝑆 ) ) |
| 19 | df-ov | ⊢ ( 𝑅 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) 〈 𝑍 , 𝑊 〉 ) 𝑆 ) = ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) | |
| 20 | eqid | ⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) | |
| 21 | 20 5 6 | xpcbas | ⊢ ( 𝐴 × 𝐵 ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 22 | eqid | ⊢ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) = ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) | |
| 23 | eqid | ⊢ ( ( 𝐷 FuncCat 𝐸 ) ×c 𝐷 ) = ( ( 𝐷 FuncCat 𝐸 ) ×c 𝐷 ) | |
| 24 | funcrcl | ⊢ ( 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) → ( 𝐶 ∈ Cat ∧ ( 𝐷 FuncCat 𝐸 ) ∈ Cat ) ) | |
| 25 | 4 24 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( 𝐷 FuncCat 𝐸 ) ∈ Cat ) ) |
| 26 | 25 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 27 | eqid | ⊢ ( 𝐶 1stF 𝐷 ) = ( 𝐶 1stF 𝐷 ) | |
| 28 | 20 26 2 27 | 1stfcl | ⊢ ( 𝜑 → ( 𝐶 1stF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐶 ) ) |
| 29 | 28 4 | cofucl | ⊢ ( 𝜑 → ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func ( 𝐷 FuncCat 𝐸 ) ) ) |
| 30 | eqid | ⊢ ( 𝐶 2ndF 𝐷 ) = ( 𝐶 2ndF 𝐷 ) | |
| 31 | 20 26 2 30 | 2ndfcl | ⊢ ( 𝜑 → ( 𝐶 2ndF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐷 ) ) |
| 32 | 22 23 29 31 | prfcl | ⊢ ( 𝜑 → ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func ( ( 𝐷 FuncCat 𝐸 ) ×c 𝐷 ) ) ) |
| 33 | eqid | ⊢ ( 𝐷 evalF 𝐸 ) = ( 𝐷 evalF 𝐸 ) | |
| 34 | eqid | ⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) | |
| 35 | 33 34 2 3 | evlfcl | ⊢ ( 𝜑 → ( 𝐷 evalF 𝐸 ) ∈ ( ( ( 𝐷 FuncCat 𝐸 ) ×c 𝐷 ) Func 𝐸 ) ) |
| 36 | 7 8 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 37 | 11 12 | opelxpd | ⊢ ( 𝜑 → 〈 𝑍 , 𝑊 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 38 | eqid | ⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 39 | 13 14 | opelxpd | ⊢ ( 𝜑 → 〈 𝑅 , 𝑆 〉 ∈ ( ( 𝑋 𝐻 𝑍 ) × ( 𝑌 𝐽 𝑊 ) ) ) |
| 40 | 20 5 6 9 10 7 8 11 12 38 | xpchom2 | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) = ( ( 𝑋 𝐻 𝑍 ) × ( 𝑌 𝐽 𝑊 ) ) ) |
| 41 | 39 40 | eleqtrrd | ⊢ ( 𝜑 → 〈 𝑅 , 𝑆 〉 ∈ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ) |
| 42 | 21 32 35 36 37 38 41 | cofu2 | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) = ( ( ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) ) |
| 43 | 19 42 | eqtrid | ⊢ ( 𝜑 → ( 𝑅 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) 〈 𝑍 , 𝑊 〉 ) 𝑆 ) = ( ( ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) ) |
| 44 | 18 43 | eqtrd | ⊢ ( 𝜑 → ( 𝑅 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑍 , 𝑊 〉 ) 𝑆 ) = ( ( ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) ) |
| 45 | 22 21 38 29 31 36 | prf1 | ⊢ ( 𝜑 → ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = 〈 ( ( 1st ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) , ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) 〉 ) |
| 46 | 21 28 4 36 | cofu1 | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( 1st ‘ 𝐺 ) ‘ ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
| 47 | 20 21 38 26 2 27 36 | 1stf1 | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 48 | op1stg | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) | |
| 49 | 7 8 48 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
| 50 | 47 49 | eqtrd | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑋 ) |
| 51 | 50 | fveq2d | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 52 | 46 51 | eqtrd | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 53 | 20 21 38 26 2 30 36 | 2ndf1 | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 54 | op2ndg | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) | |
| 55 | 7 8 54 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 56 | 53 55 | eqtrd | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 57 | 52 56 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( 1st ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) , ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) 〉 = 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ) |
| 58 | 45 57 | eqtrd | ⊢ ( 𝜑 → ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ) |
| 59 | 22 21 38 29 31 37 | prf1 | ⊢ ( 𝜑 → ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) = 〈 ( ( 1st ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) , ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) 〉 ) |
| 60 | 21 28 4 37 | cofu1 | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) = ( ( 1st ‘ 𝐺 ) ‘ ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ) |
| 61 | 20 21 38 26 2 27 37 | 1stf1 | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) = ( 1st ‘ 〈 𝑍 , 𝑊 〉 ) ) |
| 62 | op1stg | ⊢ ( ( 𝑍 ∈ 𝐴 ∧ 𝑊 ∈ 𝐵 ) → ( 1st ‘ 〈 𝑍 , 𝑊 〉 ) = 𝑍 ) | |
| 63 | 11 12 62 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝑍 , 𝑊 〉 ) = 𝑍 ) |
| 64 | 61 63 | eqtrd | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) = 𝑍 ) |
| 65 | 64 | fveq2d | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) ) |
| 66 | 60 65 | eqtrd | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) ) |
| 67 | 20 21 38 26 2 30 37 | 2ndf1 | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) = ( 2nd ‘ 〈 𝑍 , 𝑊 〉 ) ) |
| 68 | op2ndg | ⊢ ( ( 𝑍 ∈ 𝐴 ∧ 𝑊 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝑍 , 𝑊 〉 ) = 𝑊 ) | |
| 69 | 11 12 68 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑍 , 𝑊 〉 ) = 𝑊 ) |
| 70 | 67 69 | eqtrd | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) = 𝑊 ) |
| 71 | 66 70 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( 1st ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) , ( ( 1st ‘ ( 𝐶 2ndF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) 〉 = 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) |
| 72 | 59 71 | eqtrd | ⊢ ( 𝜑 → ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) = 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) |
| 73 | 58 72 | oveq12d | ⊢ ( 𝜑 → ( ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) = ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) ) |
| 74 | 22 21 38 29 31 36 37 41 | prf2 | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) = 〈 ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) , ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) 〉 ) |
| 75 | 21 28 4 36 37 38 41 | cofu2 | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) = ( ( ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) ) |
| 76 | 50 64 | oveq12d | ⊢ ( 𝜑 → ( ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) = ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ) |
| 77 | 20 21 38 26 2 27 36 37 | 1stf2 | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) = ( 1st ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ) ) |
| 78 | 77 | fveq1d | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) = ( ( 1st ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ) ‘ 〈 𝑅 , 𝑆 〉 ) ) |
| 79 | 41 | fvresd | ⊢ ( 𝜑 → ( ( 1st ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ) ‘ 〈 𝑅 , 𝑆 〉 ) = ( 1st ‘ 〈 𝑅 , 𝑆 〉 ) ) |
| 80 | op1stg | ⊢ ( ( 𝑅 ∈ ( 𝑋 𝐻 𝑍 ) ∧ 𝑆 ∈ ( 𝑌 𝐽 𝑊 ) ) → ( 1st ‘ 〈 𝑅 , 𝑆 〉 ) = 𝑅 ) | |
| 81 | 13 14 80 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝑅 , 𝑆 〉 ) = 𝑅 ) |
| 82 | 78 79 81 | 3eqtrd | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) = 𝑅 ) |
| 83 | 76 82 | fveq12d | ⊢ ( 𝜑 → ( ( ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ 𝐺 ) ( ( 1st ‘ ( 𝐶 1stF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) ) |
| 84 | 75 83 | eqtrd | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) ) |
| 85 | 20 21 38 26 2 30 36 37 | 2ndf2 | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) = ( 2nd ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ) ) |
| 86 | 85 | fveq1d | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) = ( ( 2nd ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ) ‘ 〈 𝑅 , 𝑆 〉 ) ) |
| 87 | 41 | fvresd | ⊢ ( 𝜑 → ( ( 2nd ↾ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ) ‘ 〈 𝑅 , 𝑆 〉 ) = ( 2nd ‘ 〈 𝑅 , 𝑆 〉 ) ) |
| 88 | op2ndg | ⊢ ( ( 𝑅 ∈ ( 𝑋 𝐻 𝑍 ) ∧ 𝑆 ∈ ( 𝑌 𝐽 𝑊 ) ) → ( 2nd ‘ 〈 𝑅 , 𝑆 〉 ) = 𝑆 ) | |
| 89 | 13 14 88 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑅 , 𝑆 〉 ) = 𝑆 ) |
| 90 | 86 87 89 | 3eqtrd | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) = 𝑆 ) |
| 91 | 84 90 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) , ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 2ndF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) 〉 = 〈 ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) , 𝑆 〉 ) |
| 92 | 74 91 | eqtrd | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) = 〈 ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) , 𝑆 〉 ) |
| 93 | 73 92 | fveq12d | ⊢ ( 𝜑 → ( ( ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) = ( ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) ‘ 〈 ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) , 𝑆 〉 ) ) |
| 94 | df-ov | ⊢ ( ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) 𝑆 ) = ( ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) ‘ 〈 ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) , 𝑆 〉 ) | |
| 95 | 93 94 | eqtr4di | ⊢ ( 𝜑 → ( ( ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) ( ( 1st ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑅 , 𝑆 〉 ) ) = ( ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) 𝑆 ) ) |
| 96 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 97 | eqid | ⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) | |
| 98 | 34 | fucbas | ⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 99 | relfunc | ⊢ Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) | |
| 100 | 1st2ndbr | ⊢ ( ( Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ∧ 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) → ( 1st ‘ 𝐺 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ( 2nd ‘ 𝐺 ) ) | |
| 101 | 99 4 100 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ( 2nd ‘ 𝐺 ) ) |
| 102 | 5 98 101 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) : 𝐴 ⟶ ( 𝐷 Func 𝐸 ) ) |
| 103 | 102 7 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 104 | 102 11 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 105 | eqid | ⊢ ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) = ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) | |
| 106 | 34 97 | fuchom | ⊢ ( 𝐷 Nat 𝐸 ) = ( Hom ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 107 | 5 9 106 101 7 11 | funcf2 | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) : ( 𝑋 𝐻 𝑍 ) ⟶ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 108 | 107 13 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 109 | 33 2 3 6 10 96 97 103 104 8 12 105 108 14 | evlf2val | ⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) , 𝑌 〉 ( 2nd ‘ ( 𝐷 evalF 𝐸 ) ) 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) , 𝑊 〉 ) 𝑆 ) = ( ( ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) ‘ 𝑊 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑌 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑊 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) ) ‘ 𝑊 ) ) ( ( 𝑌 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑊 ) ‘ 𝑆 ) ) ) |
| 110 | 44 95 109 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑅 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐹 ) 〈 𝑍 , 𝑊 〉 ) 𝑆 ) = ( ( ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑍 ) ‘ 𝑅 ) ‘ 𝑊 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑌 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑊 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑍 ) ) ‘ 𝑊 ) ) ( ( 𝑌 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑊 ) ‘ 𝑆 ) ) ) |