This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttrclse . Show that all finite ordinal function values of F are subsets of A . (Contributed by Scott Fenton, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ttrclselem.1 | |- F = rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
|
| Assertion | ttrclselem1 | |- ( N e. _om -> ( F ` N ) C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttrclselem.1 | |- F = rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
|
| 2 | nn0suc | |- ( N e. _om -> ( N = (/) \/ E. n e. _om N = suc n ) ) |
|
| 3 | 1 | fveq1i | |- ( F ` N ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` N ) |
| 4 | fveq2 | |- ( N = (/) -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` N ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) ) |
|
| 5 | 3 4 | eqtrid | |- ( N = (/) -> ( F ` N ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) ) |
| 6 | rdg0g | |- ( Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = Pred ( R , A , X ) ) |
|
| 7 | predss | |- Pred ( R , A , X ) C_ A |
|
| 8 | 6 7 | eqsstrdi | |- ( Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) C_ A ) |
| 9 | rdg0n | |- ( -. Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = (/) ) |
|
| 10 | 0ss | |- (/) C_ A |
|
| 11 | 9 10 | eqsstrdi | |- ( -. Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) C_ A ) |
| 12 | 8 11 | pm2.61i | |- ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) C_ A |
| 13 | 5 12 | eqsstrdi | |- ( N = (/) -> ( F ` N ) C_ A ) |
| 14 | nnon | |- ( n e. _om -> n e. On ) |
|
| 15 | nfcv | |- F/_ b Pred ( R , A , X ) |
|
| 16 | nfcv | |- F/_ b n |
|
| 17 | nfmpt1 | |- F/_ b ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) |
|
| 18 | 17 15 | nfrdg | |- F/_ b rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
| 19 | 1 18 | nfcxfr | |- F/_ b F |
| 20 | 19 16 | nffv | |- F/_ b ( F ` n ) |
| 21 | nfcv | |- F/_ b Pred ( R , A , t ) |
|
| 22 | 20 21 | nfiun | |- F/_ b U_ t e. ( F ` n ) Pred ( R , A , t ) |
| 23 | predeq3 | |- ( w = t -> Pred ( R , A , w ) = Pred ( R , A , t ) ) |
|
| 24 | 23 | cbviunv | |- U_ w e. b Pred ( R , A , w ) = U_ t e. b Pred ( R , A , t ) |
| 25 | iuneq1 | |- ( b = ( F ` n ) -> U_ t e. b Pred ( R , A , t ) = U_ t e. ( F ` n ) Pred ( R , A , t ) ) |
|
| 26 | 24 25 | eqtrid | |- ( b = ( F ` n ) -> U_ w e. b Pred ( R , A , w ) = U_ t e. ( F ` n ) Pred ( R , A , t ) ) |
| 27 | 15 16 22 1 26 | rdgsucmptf | |- ( ( n e. On /\ U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) = U_ t e. ( F ` n ) Pred ( R , A , t ) ) |
| 28 | iunss | |- ( U_ t e. ( F ` n ) Pred ( R , A , t ) C_ A <-> A. t e. ( F ` n ) Pred ( R , A , t ) C_ A ) |
|
| 29 | predss | |- Pred ( R , A , t ) C_ A |
|
| 30 | 29 | a1i | |- ( t e. ( F ` n ) -> Pred ( R , A , t ) C_ A ) |
| 31 | 28 30 | mprgbir | |- U_ t e. ( F ` n ) Pred ( R , A , t ) C_ A |
| 32 | 27 31 | eqsstrdi | |- ( ( n e. On /\ U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) C_ A ) |
| 33 | 14 32 | sylan | |- ( ( n e. _om /\ U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) C_ A ) |
| 34 | 15 16 22 1 26 | rdgsucmptnf | |- ( -. U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V -> ( F ` suc n ) = (/) ) |
| 35 | 34 10 | eqsstrdi | |- ( -. U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V -> ( F ` suc n ) C_ A ) |
| 36 | 35 | adantl | |- ( ( n e. _om /\ -. U_ t e. ( F ` n ) Pred ( R , A , t ) e. _V ) -> ( F ` suc n ) C_ A ) |
| 37 | 33 36 | pm2.61dan | |- ( n e. _om -> ( F ` suc n ) C_ A ) |
| 38 | fveq2 | |- ( N = suc n -> ( F ` N ) = ( F ` suc n ) ) |
|
| 39 | 38 | sseq1d | |- ( N = suc n -> ( ( F ` N ) C_ A <-> ( F ` suc n ) C_ A ) ) |
| 40 | 37 39 | syl5ibrcom | |- ( n e. _om -> ( N = suc n -> ( F ` N ) C_ A ) ) |
| 41 | 40 | rexlimiv | |- ( E. n e. _om N = suc n -> ( F ` N ) C_ A ) |
| 42 | 13 41 | jaoi | |- ( ( N = (/) \/ E. n e. _om N = suc n ) -> ( F ` N ) C_ A ) |
| 43 | 2 42 | syl | |- ( N e. _om -> ( F ` N ) C_ A ) |