This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of Suppes p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finds.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| finds.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| finds.3 | |- ( x = suc y -> ( ph <-> th ) ) |
||
| finds.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| finds.5 | |- ps |
||
| finds.6 | |- ( y e. _om -> ( ch -> th ) ) |
||
| Assertion | finds | |- ( A e. _om -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| 2 | finds.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | finds.3 | |- ( x = suc y -> ( ph <-> th ) ) |
|
| 4 | finds.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | finds.5 | |- ps |
|
| 6 | finds.6 | |- ( y e. _om -> ( ch -> th ) ) |
|
| 7 | 0ex | |- (/) e. _V |
|
| 8 | 7 1 | elab | |- ( (/) e. { x | ph } <-> ps ) |
| 9 | 5 8 | mpbir | |- (/) e. { x | ph } |
| 10 | vex | |- y e. _V |
|
| 11 | 10 2 | elab | |- ( y e. { x | ph } <-> ch ) |
| 12 | 10 | sucex | |- suc y e. _V |
| 13 | 12 3 | elab | |- ( suc y e. { x | ph } <-> th ) |
| 14 | 6 11 13 | 3imtr4g | |- ( y e. _om -> ( y e. { x | ph } -> suc y e. { x | ph } ) ) |
| 15 | 14 | rgen | |- A. y e. _om ( y e. { x | ph } -> suc y e. { x | ph } ) |
| 16 | peano5 | |- ( ( (/) e. { x | ph } /\ A. y e. _om ( y e. { x | ph } -> suc y e. { x | ph } ) ) -> _om C_ { x | ph } ) |
|
| 17 | 9 15 16 | mp2an | |- _om C_ { x | ph } |
| 18 | 17 | sseli | |- ( A e. _om -> A e. { x | ph } ) |
| 19 | 4 | elabg | |- ( A e. _om -> ( A e. { x | ph } <-> ta ) ) |
| 20 | 18 19 | mpbid | |- ( A e. _om -> ta ) |