This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunisuc | |- ( Ord A -> U. suc A = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeleqon | |- ( Ord A <-> ( A e. On \/ A = On ) ) |
|
| 2 | suceq | |- ( x = A -> suc x = suc A ) |
|
| 3 | 2 | unieqd | |- ( x = A -> U. suc x = U. suc A ) |
| 4 | id | |- ( x = A -> x = A ) |
|
| 5 | 3 4 | eqeq12d | |- ( x = A -> ( U. suc x = x <-> U. suc A = A ) ) |
| 6 | eloni | |- ( x e. On -> Ord x ) |
|
| 7 | ordtr | |- ( Ord x -> Tr x ) |
|
| 8 | 6 7 | syl | |- ( x e. On -> Tr x ) |
| 9 | vex | |- x e. _V |
|
| 10 | 9 | unisuc | |- ( Tr x <-> U. suc x = x ) |
| 11 | 8 10 | sylib | |- ( x e. On -> U. suc x = x ) |
| 12 | 5 11 | vtoclga | |- ( A e. On -> U. suc A = A ) |
| 13 | sucon | |- suc On = On |
|
| 14 | 13 | unieqi | |- U. suc On = U. On |
| 15 | unon | |- U. On = On |
|
| 16 | 14 15 | eqtri | |- U. suc On = On |
| 17 | suceq | |- ( A = On -> suc A = suc On ) |
|
| 18 | 17 | unieqd | |- ( A = On -> U. suc A = U. suc On ) |
| 19 | id | |- ( A = On -> A = On ) |
|
| 20 | 16 18 19 | 3eqtr4a | |- ( A = On -> U. suc A = A ) |
| 21 | 12 20 | jaoi | |- ( ( A e. On \/ A = On ) -> U. suc A = A ) |
| 22 | 1 21 | sylbi | |- ( Ord A -> U. suc A = A ) |