This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rdgsucmptf.1 | |- F/_ x A |
|
| rdgsucmptf.2 | |- F/_ x B |
||
| rdgsucmptf.3 | |- F/_ x D |
||
| rdgsucmptf.4 | |- F = rec ( ( x e. _V |-> C ) , A ) |
||
| rdgsucmptf.5 | |- ( x = ( F ` B ) -> C = D ) |
||
| Assertion | rdgsucmptf | |- ( ( B e. On /\ D e. V ) -> ( F ` suc B ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucmptf.1 | |- F/_ x A |
|
| 2 | rdgsucmptf.2 | |- F/_ x B |
|
| 3 | rdgsucmptf.3 | |- F/_ x D |
|
| 4 | rdgsucmptf.4 | |- F = rec ( ( x e. _V |-> C ) , A ) |
|
| 5 | rdgsucmptf.5 | |- ( x = ( F ` B ) -> C = D ) |
|
| 6 | rdgsuc | |- ( B e. On -> ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) = ( ( x e. _V |-> C ) ` ( rec ( ( x e. _V |-> C ) , A ) ` B ) ) ) |
|
| 7 | 4 | fveq1i | |- ( F ` suc B ) = ( rec ( ( x e. _V |-> C ) , A ) ` suc B ) |
| 8 | 4 | fveq1i | |- ( F ` B ) = ( rec ( ( x e. _V |-> C ) , A ) ` B ) |
| 9 | 8 | fveq2i | |- ( ( x e. _V |-> C ) ` ( F ` B ) ) = ( ( x e. _V |-> C ) ` ( rec ( ( x e. _V |-> C ) , A ) ` B ) ) |
| 10 | 6 7 9 | 3eqtr4g | |- ( B e. On -> ( F ` suc B ) = ( ( x e. _V |-> C ) ` ( F ` B ) ) ) |
| 11 | fvex | |- ( F ` B ) e. _V |
|
| 12 | nfmpt1 | |- F/_ x ( x e. _V |-> C ) |
|
| 13 | 12 1 | nfrdg | |- F/_ x rec ( ( x e. _V |-> C ) , A ) |
| 14 | 4 13 | nfcxfr | |- F/_ x F |
| 15 | 14 2 | nffv | |- F/_ x ( F ` B ) |
| 16 | eqid | |- ( x e. _V |-> C ) = ( x e. _V |-> C ) |
|
| 17 | 15 3 5 16 | fvmptf | |- ( ( ( F ` B ) e. _V /\ D e. V ) -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = D ) |
| 18 | 11 17 | mpan | |- ( D e. V -> ( ( x e. _V |-> C ) ` ( F ` B ) ) = D ) |
| 19 | 10 18 | sylan9eq | |- ( ( B e. On /\ D e. V ) -> ( F ` suc B ) = D ) |