This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfrdg.1 | |- F/_ x F |
|
| nfrdg.2 | |- F/_ x A |
||
| Assertion | nfrdg | |- F/_ x rec ( F , A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrdg.1 | |- F/_ x F |
|
| 2 | nfrdg.2 | |- F/_ x A |
|
| 3 | df-rdg | |- rec ( F , A ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
|
| 4 | nfcv | |- F/_ x _V |
|
| 5 | nfv | |- F/ x g = (/) |
|
| 6 | nfv | |- F/ x Lim dom g |
|
| 7 | nfcv | |- F/_ x U. ran g |
|
| 8 | nfcv | |- F/_ x ( g ` U. dom g ) |
|
| 9 | 1 8 | nffv | |- F/_ x ( F ` ( g ` U. dom g ) ) |
| 10 | 6 7 9 | nfif | |- F/_ x if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) |
| 11 | 5 2 10 | nfif | |- F/_ x if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) |
| 12 | 4 11 | nfmpt | |- F/_ x ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) |
| 13 | 12 | nfrecs | |- F/_ x recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
| 14 | 3 13 | nfcxfr | |- F/_ x rec ( F , A ) |