This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership is inherited by successors. Generalization of Exercise 9 of TakeutiZaring p. 42. (Contributed by NM, 22-Jun-1998) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsucelsuc | |- ( Ord B -> ( A e. B <-> suc A e. suc B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( Ord B /\ A e. B ) -> Ord B ) |
|
| 2 | ordelord | |- ( ( Ord B /\ A e. B ) -> Ord A ) |
|
| 3 | 1 2 | jca | |- ( ( Ord B /\ A e. B ) -> ( Ord B /\ Ord A ) ) |
| 4 | simpl | |- ( ( Ord B /\ suc A e. suc B ) -> Ord B ) |
|
| 5 | ordsuc | |- ( Ord B <-> Ord suc B ) |
|
| 6 | ordelord | |- ( ( Ord suc B /\ suc A e. suc B ) -> Ord suc A ) |
|
| 7 | ordsuc | |- ( Ord A <-> Ord suc A ) |
|
| 8 | 6 7 | sylibr | |- ( ( Ord suc B /\ suc A e. suc B ) -> Ord A ) |
| 9 | 5 8 | sylanb | |- ( ( Ord B /\ suc A e. suc B ) -> Ord A ) |
| 10 | 4 9 | jca | |- ( ( Ord B /\ suc A e. suc B ) -> ( Ord B /\ Ord A ) ) |
| 11 | ordsseleq | |- ( ( Ord suc A /\ Ord B ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) ) |
|
| 12 | 7 11 | sylanb | |- ( ( Ord A /\ Ord B ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) ) |
| 13 | 12 | ancoms | |- ( ( Ord B /\ Ord A ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) ) |
| 14 | 13 | adantl | |- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A C_ B <-> ( suc A e. B \/ suc A = B ) ) ) |
| 15 | ordsucss | |- ( Ord B -> ( A e. B -> suc A C_ B ) ) |
|
| 16 | 15 | ad2antrl | |- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B -> suc A C_ B ) ) |
| 17 | sucssel | |- ( A e. _V -> ( suc A C_ B -> A e. B ) ) |
|
| 18 | 17 | adantr | |- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A C_ B -> A e. B ) ) |
| 19 | 16 18 | impbid | |- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B <-> suc A C_ B ) ) |
| 20 | sucexb | |- ( A e. _V <-> suc A e. _V ) |
|
| 21 | elsucg | |- ( suc A e. _V -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) ) |
|
| 22 | 20 21 | sylbi | |- ( A e. _V -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) ) |
| 23 | 22 | adantr | |- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( suc A e. suc B <-> ( suc A e. B \/ suc A = B ) ) ) |
| 24 | 14 19 23 | 3bitr4d | |- ( ( A e. _V /\ ( Ord B /\ Ord A ) ) -> ( A e. B <-> suc A e. suc B ) ) |
| 25 | 24 | ex | |- ( A e. _V -> ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) ) |
| 26 | elex | |- ( A e. B -> A e. _V ) |
|
| 27 | elex | |- ( suc A e. suc B -> suc A e. _V ) |
|
| 28 | 27 20 | sylibr | |- ( suc A e. suc B -> A e. _V ) |
| 29 | 26 28 | pm5.21ni | |- ( -. A e. _V -> ( A e. B <-> suc A e. suc B ) ) |
| 30 | 29 | a1d | |- ( -. A e. _V -> ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) ) |
| 31 | 25 30 | pm2.61i | |- ( ( Ord B /\ Ord A ) -> ( A e. B <-> suc A e. suc B ) ) |
| 32 | 3 10 31 | pm5.21nd | |- ( Ord B -> ( A e. B <-> suc A e. suc B ) ) |