This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If R is set-like in A , then all predecessor classes of elements of A exist. (Contributed by Scott Fenton, 20-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setlikespec | |- ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. A | x R X } = { x | ( x e. A /\ x R X ) } |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | elpred | |- ( X e. A -> ( x e. Pred ( R , A , X ) <-> ( x e. A /\ x R X ) ) ) |
| 4 | 3 | eqabdv | |- ( X e. A -> Pred ( R , A , X ) = { x | ( x e. A /\ x R X ) } ) |
| 5 | 1 4 | eqtr4id | |- ( X e. A -> { x e. A | x R X } = Pred ( R , A , X ) ) |
| 6 | 5 | adantr | |- ( ( X e. A /\ R Se A ) -> { x e. A | x R X } = Pred ( R , A , X ) ) |
| 7 | seex | |- ( ( R Se A /\ X e. A ) -> { x e. A | x R X } e. _V ) |
|
| 8 | 7 | ancoms | |- ( ( X e. A /\ R Se A ) -> { x e. A | x R X } e. _V ) |
| 9 | 6 8 | eqeltrrd | |- ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V ) |