This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the symmetric group function at A represented as extensible structure with three slots. This corresponds to the former definition of SymGrp . (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 12-Jan-2015) (Revised by AV, 31-Mar-2024) (Proof shortened by AV, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgvalstruct.g | |- G = ( SymGrp ` A ) |
|
| symgvalstruct.b | |- B = { x | x : A -1-1-onto-> A } |
||
| symgvalstruct.m | |- M = ( A ^m A ) |
||
| symgvalstruct.p | |- .+ = ( f e. M , g e. M |-> ( f o. g ) ) |
||
| symgvalstruct.j | |- J = ( Xt_ ` ( A X. { ~P A } ) ) |
||
| Assertion | symgvalstruct | |- ( A e. V -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgvalstruct.g | |- G = ( SymGrp ` A ) |
|
| 2 | symgvalstruct.b | |- B = { x | x : A -1-1-onto-> A } |
|
| 3 | symgvalstruct.m | |- M = ( A ^m A ) |
|
| 4 | symgvalstruct.p | |- .+ = ( f e. M , g e. M |-> ( f o. g ) ) |
|
| 5 | symgvalstruct.j | |- J = ( Xt_ ` ( A X. { ~P A } ) ) |
|
| 6 | hashv01gt1 | |- ( A e. V -> ( ( # ` A ) = 0 \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) ) |
|
| 7 | hasheq0 | |- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
|
| 8 | 0symgefmndeq | |- ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) |
|
| 9 | 8 | eqcomi | |- ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) |
| 10 | fveq2 | |- ( A = (/) -> ( SymGrp ` A ) = ( SymGrp ` (/) ) ) |
|
| 11 | 1 10 | eqtrid | |- ( A = (/) -> G = ( SymGrp ` (/) ) ) |
| 12 | fveq2 | |- ( A = (/) -> ( EndoFMnd ` A ) = ( EndoFMnd ` (/) ) ) |
|
| 13 | 9 11 12 | 3eqtr4a | |- ( A = (/) -> G = ( EndoFMnd ` A ) ) |
| 14 | 13 | adantl | |- ( ( A e. V /\ A = (/) ) -> G = ( EndoFMnd ` A ) ) |
| 15 | eqid | |- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) |
|
| 16 | 15 3 4 5 | efmnd | |- ( A e. V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 17 | 16 | adantr | |- ( ( A e. V /\ A = (/) ) -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 18 | 0map0sn0 | |- ( (/) ^m (/) ) = { (/) } |
|
| 19 | id | |- ( A = (/) -> A = (/) ) |
|
| 20 | 19 19 | oveq12d | |- ( A = (/) -> ( A ^m A ) = ( (/) ^m (/) ) ) |
| 21 | 11 | fveq2d | |- ( A = (/) -> ( Base ` G ) = ( Base ` ( SymGrp ` (/) ) ) ) |
| 22 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 23 | 1 22 | symgbas | |- ( Base ` G ) = { x | x : A -1-1-onto-> A } |
| 24 | symgbas0 | |- ( Base ` ( SymGrp ` (/) ) ) = { (/) } |
|
| 25 | 21 23 24 | 3eqtr3g | |- ( A = (/) -> { x | x : A -1-1-onto-> A } = { (/) } ) |
| 26 | 2 25 | eqtrid | |- ( A = (/) -> B = { (/) } ) |
| 27 | 18 20 26 | 3eqtr4a | |- ( A = (/) -> ( A ^m A ) = B ) |
| 28 | 27 | adantl | |- ( ( A e. V /\ A = (/) ) -> ( A ^m A ) = B ) |
| 29 | 3 28 | eqtrid | |- ( ( A e. V /\ A = (/) ) -> M = B ) |
| 30 | 29 | opeq2d | |- ( ( A e. V /\ A = (/) ) -> <. ( Base ` ndx ) , M >. = <. ( Base ` ndx ) , B >. ) |
| 31 | 30 | tpeq1d | |- ( ( A e. V /\ A = (/) ) -> { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 32 | 14 17 31 | 3eqtrd | |- ( ( A e. V /\ A = (/) ) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 33 | 32 | ex | |- ( A e. V -> ( A = (/) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 34 | 7 33 | sylbid | |- ( A e. V -> ( ( # ` A ) = 0 -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 35 | hash1snb | |- ( A e. V -> ( ( # ` A ) = 1 <-> E. x A = { x } ) ) |
|
| 36 | vsnex | |- { x } e. _V |
|
| 37 | eleq1 | |- ( A = { x } -> ( A e. _V <-> { x } e. _V ) ) |
|
| 38 | 36 37 | mpbiri | |- ( A = { x } -> A e. _V ) |
| 39 | 15 3 4 5 | efmnd | |- ( A e. _V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 40 | 38 39 | syl | |- ( A = { x } -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 41 | snsymgefmndeq | |- ( A = { x } -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) |
|
| 42 | 41 1 | eqtr4di | |- ( A = { x } -> ( EndoFMnd ` A ) = G ) |
| 43 | 42 | fveq2d | |- ( A = { x } -> ( Base ` ( EndoFMnd ` A ) ) = ( Base ` G ) ) |
| 44 | eqid | |- ( Base ` ( EndoFMnd ` A ) ) = ( Base ` ( EndoFMnd ` A ) ) |
|
| 45 | 15 44 | efmndbas | |- ( Base ` ( EndoFMnd ` A ) ) = ( A ^m A ) |
| 46 | 45 3 | eqtr4i | |- ( Base ` ( EndoFMnd ` A ) ) = M |
| 47 | 23 2 | eqtr4i | |- ( Base ` G ) = B |
| 48 | 43 46 47 | 3eqtr3g | |- ( A = { x } -> M = B ) |
| 49 | 48 | opeq2d | |- ( A = { x } -> <. ( Base ` ndx ) , M >. = <. ( Base ` ndx ) , B >. ) |
| 50 | 49 | tpeq1d | |- ( A = { x } -> { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 51 | 40 42 50 | 3eqtr3d | |- ( A = { x } -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 52 | 51 | exlimiv | |- ( E. x A = { x } -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 53 | 35 52 | biimtrdi | |- ( A e. V -> ( ( # ` A ) = 1 -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 54 | ssnpss | |- ( ( A ^m A ) C_ B -> -. B C. ( A ^m A ) ) |
|
| 55 | 15 1 | symgpssefmnd | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( Base ` G ) C. ( Base ` ( EndoFMnd ` A ) ) ) |
| 56 | 2 23 | eqtr4i | |- B = ( Base ` G ) |
| 57 | 45 | eqcomi | |- ( A ^m A ) = ( Base ` ( EndoFMnd ` A ) ) |
| 58 | 56 57 | psseq12i | |- ( B C. ( A ^m A ) <-> ( Base ` G ) C. ( Base ` ( EndoFMnd ` A ) ) ) |
| 59 | 55 58 | sylibr | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> B C. ( A ^m A ) ) |
| 60 | 54 59 | nsyl3 | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> -. ( A ^m A ) C_ B ) |
| 61 | fvexd | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( EndoFMnd ` A ) e. _V ) |
|
| 62 | f1osetex | |- { x | x : A -1-1-onto-> A } e. _V |
|
| 63 | 2 62 | eqeltri | |- B e. _V |
| 64 | 63 | a1i | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> B e. _V ) |
| 65 | 1 2 | symgval | |- G = ( ( EndoFMnd ` A ) |`s B ) |
| 66 | 65 57 | ressval2 | |- ( ( -. ( A ^m A ) C_ B /\ ( EndoFMnd ` A ) e. _V /\ B e. _V ) -> G = ( ( EndoFMnd ` A ) sSet <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. ) ) |
| 67 | 60 61 64 66 | syl3anc | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> G = ( ( EndoFMnd ` A ) sSet <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. ) ) |
| 68 | ovex | |- ( A ^m A ) e. _V |
|
| 69 | 68 | inex2 | |- ( B i^i ( A ^m A ) ) e. _V |
| 70 | setsval | |- ( ( ( EndoFMnd ` A ) e. _V /\ ( B i^i ( A ^m A ) ) e. _V ) -> ( ( EndoFMnd ` A ) sSet <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. ) = ( ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) ) |
|
| 71 | 61 69 70 | sylancl | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( EndoFMnd ` A ) sSet <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. ) = ( ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) ) |
| 72 | 16 | adantr | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 73 | 72 | reseq1d | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) = ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } |` ( _V \ { ( Base ` ndx ) } ) ) ) |
| 74 | 73 | uneq1d | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = ( ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) ) |
| 75 | eqidd | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
|
| 76 | fvexd | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( +g ` ndx ) e. _V ) |
|
| 77 | fvexd | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( TopSet ` ndx ) e. _V ) |
|
| 78 | 3 68 | eqeltri | |- M e. _V |
| 79 | 78 78 | mpoex | |- ( f e. M , g e. M |-> ( f o. g ) ) e. _V |
| 80 | 4 79 | eqeltri | |- .+ e. _V |
| 81 | 80 | a1i | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> .+ e. _V ) |
| 82 | 5 | fvexi | |- J e. _V |
| 83 | 82 | a1i | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> J e. _V ) |
| 84 | basendxnplusgndx | |- ( Base ` ndx ) =/= ( +g ` ndx ) |
|
| 85 | 84 | necomi | |- ( +g ` ndx ) =/= ( Base ` ndx ) |
| 86 | 85 | a1i | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( +g ` ndx ) =/= ( Base ` ndx ) ) |
| 87 | tsetndxnbasendx | |- ( TopSet ` ndx ) =/= ( Base ` ndx ) |
|
| 88 | 87 | a1i | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( TopSet ` ndx ) =/= ( Base ` ndx ) ) |
| 89 | 75 76 77 81 83 86 88 | tpres | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } |` ( _V \ { ( Base ` ndx ) } ) ) = { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 90 | 89 | uneq1d | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = ( { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) ) |
| 91 | uncom | |- ( { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = ( { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } u. { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
|
| 92 | tpass | |- { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = ( { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } u. { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
|
| 93 | 91 92 | eqtr4i | |- ( { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } |
| 94 | 1 56 | symgbasmap | |- ( x e. B -> x e. ( A ^m A ) ) |
| 95 | 94 | a1i | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( x e. B -> x e. ( A ^m A ) ) ) |
| 96 | 95 | ssrdv | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> B C_ ( A ^m A ) ) |
| 97 | dfss2 | |- ( B C_ ( A ^m A ) <-> ( B i^i ( A ^m A ) ) = B ) |
|
| 98 | 96 97 | sylib | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( B i^i ( A ^m A ) ) = B ) |
| 99 | 98 | opeq2d | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. = <. ( Base ` ndx ) , B >. ) |
| 100 | 99 | tpeq1d | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 101 | 93 100 | eqtrid | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( { <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 102 | 74 90 101 | 3eqtrd | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( ( ( EndoFMnd ` A ) |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , ( B i^i ( A ^m A ) ) >. } ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 103 | 67 71 102 | 3eqtrd | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 104 | 103 | ex | |- ( A e. V -> ( 1 < ( # ` A ) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 105 | 34 53 104 | 3jaod | |- ( A e. V -> ( ( ( # ` A ) = 0 \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) ) |
| 106 | 6 105 | mpd | |- ( A e. V -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |