This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the symmetric group function at A . (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 12-Jan-2015) (Revised by AV, 28-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgval.1 | |- G = ( SymGrp ` A ) |
|
| symgval.2 | |- B = { x | x : A -1-1-onto-> A } |
||
| Assertion | symgval | |- G = ( ( EndoFMnd ` A ) |`s B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgval.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgval.2 | |- B = { x | x : A -1-1-onto-> A } |
|
| 3 | df-symg | |- SymGrp = ( x e. _V |-> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) ) |
|
| 4 | 3 | a1i | |- ( A e. _V -> SymGrp = ( x e. _V |-> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) ) ) |
| 5 | fveq2 | |- ( x = A -> ( EndoFMnd ` x ) = ( EndoFMnd ` A ) ) |
|
| 6 | eqidd | |- ( x = A -> h = h ) |
|
| 7 | id | |- ( x = A -> x = A ) |
|
| 8 | 6 7 7 | f1oeq123d | |- ( x = A -> ( h : x -1-1-onto-> x <-> h : A -1-1-onto-> A ) ) |
| 9 | 8 | abbidv | |- ( x = A -> { h | h : x -1-1-onto-> x } = { h | h : A -1-1-onto-> A } ) |
| 10 | f1oeq1 | |- ( h = x -> ( h : A -1-1-onto-> A <-> x : A -1-1-onto-> A ) ) |
|
| 11 | 10 | cbvabv | |- { h | h : A -1-1-onto-> A } = { x | x : A -1-1-onto-> A } |
| 12 | 9 11 | eqtrdi | |- ( x = A -> { h | h : x -1-1-onto-> x } = { x | x : A -1-1-onto-> A } ) |
| 13 | 12 2 | eqtr4di | |- ( x = A -> { h | h : x -1-1-onto-> x } = B ) |
| 14 | 5 13 | oveq12d | |- ( x = A -> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) = ( ( EndoFMnd ` A ) |`s B ) ) |
| 15 | 14 | adantl | |- ( ( A e. _V /\ x = A ) -> ( ( EndoFMnd ` x ) |`s { h | h : x -1-1-onto-> x } ) = ( ( EndoFMnd ` A ) |`s B ) ) |
| 16 | id | |- ( A e. _V -> A e. _V ) |
|
| 17 | ovexd | |- ( A e. _V -> ( ( EndoFMnd ` A ) |`s B ) e. _V ) |
|
| 18 | nfv | |- F/ x A e. _V |
|
| 19 | nfcv | |- F/_ x A |
|
| 20 | nfcv | |- F/_ x ( EndoFMnd ` A ) |
|
| 21 | nfcv | |- F/_ x |`s |
|
| 22 | nfab1 | |- F/_ x { x | x : A -1-1-onto-> A } |
|
| 23 | 2 22 | nfcxfr | |- F/_ x B |
| 24 | 20 21 23 | nfov | |- F/_ x ( ( EndoFMnd ` A ) |`s B ) |
| 25 | 4 15 16 17 18 19 24 | fvmptdf | |- ( A e. _V -> ( SymGrp ` A ) = ( ( EndoFMnd ` A ) |`s B ) ) |
| 26 | ress0 | |- ( (/) |`s B ) = (/) |
|
| 27 | 26 | a1i | |- ( -. A e. _V -> ( (/) |`s B ) = (/) ) |
| 28 | fvprc | |- ( -. A e. _V -> ( EndoFMnd ` A ) = (/) ) |
|
| 29 | 28 | oveq1d | |- ( -. A e. _V -> ( ( EndoFMnd ` A ) |`s B ) = ( (/) |`s B ) ) |
| 30 | fvprc | |- ( -. A e. _V -> ( SymGrp ` A ) = (/) ) |
|
| 31 | 27 29 30 | 3eqtr4rd | |- ( -. A e. _V -> ( SymGrp ` A ) = ( ( EndoFMnd ` A ) |`s B ) ) |
| 32 | 25 31 | pm2.61i | |- ( SymGrp ` A ) = ( ( EndoFMnd ` A ) |`s B ) |
| 33 | 1 32 | eqtri | |- G = ( ( EndoFMnd ` A ) |`s B ) |