This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on the empty set is identical with the monoid of endofunctions on the empty set. (Contributed by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0symgefmndeq | |- ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- { (/) } C_ { (/) } |
|
| 2 | fvex | |- ( EndoFMnd ` (/) ) e. _V |
|
| 3 | p0ex | |- { (/) } e. _V |
|
| 4 | eqid | |- ( SymGrp ` (/) ) = ( SymGrp ` (/) ) |
|
| 5 | symgbas0 | |- ( Base ` ( SymGrp ` (/) ) ) = { (/) } |
|
| 6 | 5 | eqcomi | |- { (/) } = ( Base ` ( SymGrp ` (/) ) ) |
| 7 | eqid | |- ( EndoFMnd ` (/) ) = ( EndoFMnd ` (/) ) |
|
| 8 | 4 6 7 | symgressbas | |- ( SymGrp ` (/) ) = ( ( EndoFMnd ` (/) ) |`s { (/) } ) |
| 9 | efmndbas0 | |- ( Base ` ( EndoFMnd ` (/) ) ) = { (/) } |
|
| 10 | 9 | eqcomi | |- { (/) } = ( Base ` ( EndoFMnd ` (/) ) ) |
| 11 | 8 10 | ressid2 | |- ( ( { (/) } C_ { (/) } /\ ( EndoFMnd ` (/) ) e. _V /\ { (/) } e. _V ) -> ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) ) |
| 12 | 1 2 3 11 | mp3an | |- ( SymGrp ` (/) ) = ( EndoFMnd ` (/) ) |
| 13 | 12 | eqcomi | |- ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) |