This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered triple of ordered pairs restricted to all but one first components of the pairs is an unordered pair of ordered pairs. (Contributed by AV, 14-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpres.t | |- ( ph -> T = { <. A , D >. , <. B , E >. , <. C , F >. } ) |
|
| tpres.b | |- ( ph -> B e. V ) |
||
| tpres.c | |- ( ph -> C e. V ) |
||
| tpres.e | |- ( ph -> E e. V ) |
||
| tpres.f | |- ( ph -> F e. V ) |
||
| tpres.1 | |- ( ph -> B =/= A ) |
||
| tpres.2 | |- ( ph -> C =/= A ) |
||
| Assertion | tpres | |- ( ph -> ( T |` ( _V \ { A } ) ) = { <. B , E >. , <. C , F >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpres.t | |- ( ph -> T = { <. A , D >. , <. B , E >. , <. C , F >. } ) |
|
| 2 | tpres.b | |- ( ph -> B e. V ) |
|
| 3 | tpres.c | |- ( ph -> C e. V ) |
|
| 4 | tpres.e | |- ( ph -> E e. V ) |
|
| 5 | tpres.f | |- ( ph -> F e. V ) |
|
| 6 | tpres.1 | |- ( ph -> B =/= A ) |
|
| 7 | tpres.2 | |- ( ph -> C =/= A ) |
|
| 8 | df-res | |- ( T |` ( _V \ { A } ) ) = ( T i^i ( ( _V \ { A } ) X. _V ) ) |
|
| 9 | elin | |- ( x e. ( T i^i ( ( _V \ { A } ) X. _V ) ) <-> ( x e. T /\ x e. ( ( _V \ { A } ) X. _V ) ) ) |
|
| 10 | elxp | |- ( x e. ( ( _V \ { A } ) X. _V ) <-> E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) |
|
| 11 | 10 | anbi2i | |- ( ( x e. T /\ x e. ( ( _V \ { A } ) X. _V ) ) <-> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) |
| 12 | 1 | eleq2d | |- ( ph -> ( x e. T <-> x e. { <. A , D >. , <. B , E >. , <. C , F >. } ) ) |
| 13 | vex | |- x e. _V |
|
| 14 | 13 | eltp | |- ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } <-> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
| 15 | eldifsn | |- ( a e. ( _V \ { A } ) <-> ( a e. _V /\ a =/= A ) ) |
|
| 16 | eqeq1 | |- ( x = <. a , b >. -> ( x = <. A , D >. <-> <. a , b >. = <. A , D >. ) ) |
|
| 17 | 16 | adantl | |- ( ( a =/= A /\ x = <. a , b >. ) -> ( x = <. A , D >. <-> <. a , b >. = <. A , D >. ) ) |
| 18 | vex | |- a e. _V |
|
| 19 | vex | |- b e. _V |
|
| 20 | 18 19 | opth | |- ( <. a , b >. = <. A , D >. <-> ( a = A /\ b = D ) ) |
| 21 | eqneqall | |- ( a = A -> ( a =/= A -> ( b = D -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) ) |
|
| 22 | 21 | com12 | |- ( a =/= A -> ( a = A -> ( b = D -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) ) |
| 23 | 22 | impd | |- ( a =/= A -> ( ( a = A /\ b = D ) -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 24 | 20 23 | biimtrid | |- ( a =/= A -> ( <. a , b >. = <. A , D >. -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 25 | 24 | adantr | |- ( ( a =/= A /\ x = <. a , b >. ) -> ( <. a , b >. = <. A , D >. -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 26 | 17 25 | sylbid | |- ( ( a =/= A /\ x = <. a , b >. ) -> ( x = <. A , D >. -> ( ph -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 27 | 26 | impd | |- ( ( a =/= A /\ x = <. a , b >. ) -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 28 | 27 | ex | |- ( a =/= A -> ( x = <. a , b >. -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 29 | 28 | adantl | |- ( ( a e. _V /\ a =/= A ) -> ( x = <. a , b >. -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 30 | 15 29 | sylbi | |- ( a e. ( _V \ { A } ) -> ( x = <. a , b >. -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 31 | 30 | adantr | |- ( ( a e. ( _V \ { A } ) /\ b e. _V ) -> ( x = <. a , b >. -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 32 | 31 | impcom | |- ( ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> ( ( x = <. A , D >. /\ ph ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 33 | 32 | com12 | |- ( ( x = <. A , D >. /\ ph ) -> ( ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 34 | 33 | exlimdvv | |- ( ( x = <. A , D >. /\ ph ) -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 35 | 34 | ex | |- ( x = <. A , D >. -> ( ph -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) ) |
| 36 | 35 | impd | |- ( x = <. A , D >. -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 37 | orc | |- ( x = <. B , E >. -> ( x = <. B , E >. \/ x = <. C , F >. ) ) |
|
| 38 | 37 | a1d | |- ( x = <. B , E >. -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 39 | olc | |- ( x = <. C , F >. -> ( x = <. B , E >. \/ x = <. C , F >. ) ) |
|
| 40 | 39 | a1d | |- ( x = <. C , F >. -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 41 | 36 38 40 | 3jaoi | |- ( ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 42 | 14 41 | sylbi | |- ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> ( x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 43 | 13 | elpr | |- ( x e. { <. B , E >. , <. C , F >. } <-> ( x = <. B , E >. \/ x = <. C , F >. ) ) |
| 44 | 42 43 | imbitrrdi | |- ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } -> ( ( ph /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) |
| 45 | 44 | expd | |- ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } -> ( ph -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) ) |
| 46 | 45 | com12 | |- ( ph -> ( x e. { <. A , D >. , <. B , E >. , <. C , F >. } -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) ) |
| 47 | 12 46 | sylbid | |- ( ph -> ( x e. T -> ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) ) |
| 48 | 47 | impd | |- ( ph -> ( ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) -> x e. { <. B , E >. , <. C , F >. } ) ) |
| 49 | 3mix2 | |- ( x = <. B , E >. -> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
|
| 50 | 3mix3 | |- ( x = <. C , F >. -> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
|
| 51 | 49 50 | jaoi | |- ( ( x = <. B , E >. \/ x = <. C , F >. ) -> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
| 52 | 51 | adantr | |- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) |
| 53 | 12 14 | bitrdi | |- ( ph -> ( x e. T <-> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 54 | 53 | adantl | |- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> ( x e. T <-> ( x = <. A , D >. \/ x = <. B , E >. \/ x = <. C , F >. ) ) ) |
| 55 | 52 54 | mpbird | |- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> x e. T ) |
| 56 | 2 | elexd | |- ( ph -> B e. _V ) |
| 57 | 4 | elexd | |- ( ph -> E e. _V ) |
| 58 | 56 6 57 | jca31 | |- ( ph -> ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) |
| 59 | 58 | anim2i | |- ( ( x = <. B , E >. /\ ph ) -> ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) ) |
| 60 | opeq12 | |- ( ( a = B /\ b = E ) -> <. a , b >. = <. B , E >. ) |
|
| 61 | 60 | eqeq2d | |- ( ( a = B /\ b = E ) -> ( x = <. a , b >. <-> x = <. B , E >. ) ) |
| 62 | eleq1 | |- ( a = B -> ( a e. _V <-> B e. _V ) ) |
|
| 63 | neeq1 | |- ( a = B -> ( a =/= A <-> B =/= A ) ) |
|
| 64 | 62 63 | anbi12d | |- ( a = B -> ( ( a e. _V /\ a =/= A ) <-> ( B e. _V /\ B =/= A ) ) ) |
| 65 | eleq1 | |- ( b = E -> ( b e. _V <-> E e. _V ) ) |
|
| 66 | 64 65 | bi2anan9 | |- ( ( a = B /\ b = E ) -> ( ( ( a e. _V /\ a =/= A ) /\ b e. _V ) <-> ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) ) |
| 67 | 61 66 | anbi12d | |- ( ( a = B /\ b = E ) -> ( ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) <-> ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) ) ) |
| 68 | 67 | spc2egv | |- ( ( B e. V /\ E e. V ) -> ( ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 69 | 2 4 68 | syl2anc | |- ( ph -> ( ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 70 | 69 | adantl | |- ( ( x = <. B , E >. /\ ph ) -> ( ( x = <. B , E >. /\ ( ( B e. _V /\ B =/= A ) /\ E e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 71 | 59 70 | mpd | |- ( ( x = <. B , E >. /\ ph ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 72 | 3 | elexd | |- ( ph -> C e. _V ) |
| 73 | 5 | elexd | |- ( ph -> F e. _V ) |
| 74 | 72 7 73 | jca31 | |- ( ph -> ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) |
| 75 | 74 | anim2i | |- ( ( x = <. C , F >. /\ ph ) -> ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) ) |
| 76 | opeq12 | |- ( ( a = C /\ b = F ) -> <. a , b >. = <. C , F >. ) |
|
| 77 | 76 | eqeq2d | |- ( ( a = C /\ b = F ) -> ( x = <. a , b >. <-> x = <. C , F >. ) ) |
| 78 | eleq1 | |- ( a = C -> ( a e. _V <-> C e. _V ) ) |
|
| 79 | neeq1 | |- ( a = C -> ( a =/= A <-> C =/= A ) ) |
|
| 80 | 78 79 | anbi12d | |- ( a = C -> ( ( a e. _V /\ a =/= A ) <-> ( C e. _V /\ C =/= A ) ) ) |
| 81 | eleq1 | |- ( b = F -> ( b e. _V <-> F e. _V ) ) |
|
| 82 | 80 81 | bi2anan9 | |- ( ( a = C /\ b = F ) -> ( ( ( a e. _V /\ a =/= A ) /\ b e. _V ) <-> ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) ) |
| 83 | 77 82 | anbi12d | |- ( ( a = C /\ b = F ) -> ( ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) <-> ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) ) ) |
| 84 | 83 | spc2egv | |- ( ( C e. V /\ F e. V ) -> ( ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 85 | 3 5 84 | syl2anc | |- ( ph -> ( ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 86 | 85 | adantl | |- ( ( x = <. C , F >. /\ ph ) -> ( ( x = <. C , F >. /\ ( ( C e. _V /\ C =/= A ) /\ F e. _V ) ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) ) |
| 87 | 75 86 | mpd | |- ( ( x = <. C , F >. /\ ph ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 88 | 71 87 | jaoian | |- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 89 | 15 | anbi1i | |- ( ( a e. ( _V \ { A } ) /\ b e. _V ) <-> ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) |
| 90 | 89 | anbi2i | |- ( ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) <-> ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 91 | 90 | 2exbii | |- ( E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) <-> E. a E. b ( x = <. a , b >. /\ ( ( a e. _V /\ a =/= A ) /\ b e. _V ) ) ) |
| 92 | 88 91 | sylibr | |- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) |
| 93 | 55 92 | jca | |- ( ( ( x = <. B , E >. \/ x = <. C , F >. ) /\ ph ) -> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) |
| 94 | 93 | ex | |- ( ( x = <. B , E >. \/ x = <. C , F >. ) -> ( ph -> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) ) |
| 95 | 43 94 | sylbi | |- ( x e. { <. B , E >. , <. C , F >. } -> ( ph -> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) ) |
| 96 | 95 | com12 | |- ( ph -> ( x e. { <. B , E >. , <. C , F >. } -> ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) ) ) |
| 97 | 48 96 | impbid | |- ( ph -> ( ( x e. T /\ E. a E. b ( x = <. a , b >. /\ ( a e. ( _V \ { A } ) /\ b e. _V ) ) ) <-> x e. { <. B , E >. , <. C , F >. } ) ) |
| 98 | 11 97 | bitrid | |- ( ph -> ( ( x e. T /\ x e. ( ( _V \ { A } ) X. _V ) ) <-> x e. { <. B , E >. , <. C , F >. } ) ) |
| 99 | 9 98 | bitrid | |- ( ph -> ( x e. ( T i^i ( ( _V \ { A } ) X. _V ) ) <-> x e. { <. B , E >. , <. C , F >. } ) ) |
| 100 | 99 | eqrdv | |- ( ph -> ( T i^i ( ( _V \ { A } ) X. _V ) ) = { <. B , E >. , <. C , F >. } ) |
| 101 | 8 100 | eqtrid | |- ( ph -> ( T |` ( _V \ { A } ) ) = { <. B , E >. , <. C , F >. } ) |