This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a set A with more than one element, the symmetric group on A is a proper subset of the monoid of endofunctions on A . (Contributed by AV, 31-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgpssefmnd.m | |- M = ( EndoFMnd ` A ) |
|
| symgpssefmnd.g | |- G = ( SymGrp ` A ) |
||
| Assertion | symgpssefmnd | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( Base ` G ) C. ( Base ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgpssefmnd.m | |- M = ( EndoFMnd ` A ) |
|
| 2 | symgpssefmnd.g | |- G = ( SymGrp ` A ) |
|
| 3 | hashgt12el | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> E. x e. A E. y e. A x =/= y ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 2 4 | symgbasmap | |- ( x e. ( Base ` G ) -> x e. ( A ^m A ) ) |
| 6 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 7 | 1 6 | efmndbas | |- ( Base ` M ) = ( A ^m A ) |
| 8 | 5 7 | eleqtrrdi | |- ( x e. ( Base ` G ) -> x e. ( Base ` M ) ) |
| 9 | 8 | ssriv | |- ( Base ` G ) C_ ( Base ` M ) |
| 10 | 9 | a1i | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( Base ` G ) C_ ( Base ` M ) ) |
| 11 | fconst6g | |- ( x e. A -> ( A X. { x } ) : A --> A ) |
|
| 12 | 11 | adantr | |- ( ( x e. A /\ y e. A ) -> ( A X. { x } ) : A --> A ) |
| 13 | 12 | 3ad2ant2 | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( A X. { x } ) : A --> A ) |
| 14 | 1 6 | elefmndbas | |- ( A e. V -> ( ( A X. { x } ) e. ( Base ` M ) <-> ( A X. { x } ) : A --> A ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( ( A X. { x } ) e. ( Base ` M ) <-> ( A X. { x } ) : A --> A ) ) |
| 16 | 13 15 | mpbird | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( A X. { x } ) e. ( Base ` M ) ) |
| 17 | fconstg | |- ( x e. A -> ( A X. { x } ) : A --> { x } ) |
|
| 18 | 17 | adantr | |- ( ( x e. A /\ y e. A ) -> ( A X. { x } ) : A --> { x } ) |
| 19 | 18 | 3ad2ant2 | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( A X. { x } ) : A --> { x } ) |
| 20 | id | |- ( ( x e. A /\ y e. A /\ x =/= y ) -> ( x e. A /\ y e. A /\ x =/= y ) ) |
|
| 21 | 20 | 3expa | |- ( ( ( x e. A /\ y e. A ) /\ x =/= y ) -> ( x e. A /\ y e. A /\ x =/= y ) ) |
| 22 | 21 | 3adant1 | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( x e. A /\ y e. A /\ x =/= y ) ) |
| 23 | nf1oconst | |- ( ( ( A X. { x } ) : A --> { x } /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> -. ( A X. { x } ) : A -1-1-onto-> A ) |
|
| 24 | 19 22 23 | syl2anc | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> -. ( A X. { x } ) : A -1-1-onto-> A ) |
| 25 | 2 4 | elsymgbas | |- ( A e. V -> ( ( A X. { x } ) e. ( Base ` G ) <-> ( A X. { x } ) : A -1-1-onto-> A ) ) |
| 26 | 25 | notbid | |- ( A e. V -> ( -. ( A X. { x } ) e. ( Base ` G ) <-> -. ( A X. { x } ) : A -1-1-onto-> A ) ) |
| 27 | 26 | 3ad2ant1 | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( -. ( A X. { x } ) e. ( Base ` G ) <-> -. ( A X. { x } ) : A -1-1-onto-> A ) ) |
| 28 | 24 27 | mpbird | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> -. ( A X. { x } ) e. ( Base ` G ) ) |
| 29 | 10 16 28 | ssnelpssd | |- ( ( A e. V /\ ( x e. A /\ y e. A ) /\ x =/= y ) -> ( Base ` G ) C. ( Base ` M ) ) |
| 30 | 29 | 3exp | |- ( A e. V -> ( ( x e. A /\ y e. A ) -> ( x =/= y -> ( Base ` G ) C. ( Base ` M ) ) ) ) |
| 31 | 30 | rexlimdvv | |- ( A e. V -> ( E. x e. A E. y e. A x =/= y -> ( Base ` G ) C. ( Base ` M ) ) ) |
| 32 | 31 | adantr | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( E. x e. A E. y e. A x =/= y -> ( Base ` G ) C. ( Base ` M ) ) ) |
| 33 | 3 32 | mpd | |- ( ( A e. V /\ 1 < ( # ` A ) ) -> ( Base ` G ) C. ( Base ` M ) ) |