This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashv01gt1 | |- ( M e. V -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnn0pnf | |- ( M e. V -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |
|
| 2 | elnn0 | |- ( ( # ` M ) e. NN0 <-> ( ( # ` M ) e. NN \/ ( # ` M ) = 0 ) ) |
|
| 3 | exmidne | |- ( ( # ` M ) = 1 \/ ( # ` M ) =/= 1 ) |
|
| 4 | nngt1ne1 | |- ( ( # ` M ) e. NN -> ( 1 < ( # ` M ) <-> ( # ` M ) =/= 1 ) ) |
|
| 5 | 4 | orbi2d | |- ( ( # ` M ) e. NN -> ( ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) <-> ( ( # ` M ) = 1 \/ ( # ` M ) =/= 1 ) ) ) |
| 6 | 3 5 | mpbiri | |- ( ( # ` M ) e. NN -> ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 7 | 6 | olcd | |- ( ( # ` M ) e. NN -> ( ( # ` M ) = 0 \/ ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) ) |
| 8 | 3orass | |- ( ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) <-> ( ( # ` M ) = 0 \/ ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) ) |
|
| 9 | 7 8 | sylibr | |- ( ( # ` M ) e. NN -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 10 | 3mix1 | |- ( ( # ` M ) = 0 -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
|
| 11 | 9 10 | jaoi | |- ( ( ( # ` M ) e. NN \/ ( # ` M ) = 0 ) -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 12 | 2 11 | sylbi | |- ( ( # ` M ) e. NN0 -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 13 | 1re | |- 1 e. RR |
|
| 14 | ltpnf | |- ( 1 e. RR -> 1 < +oo ) |
|
| 15 | 13 14 | ax-mp | |- 1 < +oo |
| 16 | breq2 | |- ( ( # ` M ) = +oo -> ( 1 < ( # ` M ) <-> 1 < +oo ) ) |
|
| 17 | 15 16 | mpbiri | |- ( ( # ` M ) = +oo -> 1 < ( # ` M ) ) |
| 18 | 17 | 3mix3d | |- ( ( # ` M ) = +oo -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 19 | 12 18 | jaoi | |- ( ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 20 | 1 19 | syl | |- ( M e. V -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |