This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on set A . (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmnd.1 | |- G = ( EndoFMnd ` A ) |
|
| efmnd.2 | |- B = ( A ^m A ) |
||
| efmnd.3 | |- .+ = ( f e. B , g e. B |-> ( f o. g ) ) |
||
| efmnd.4 | |- J = ( Xt_ ` ( A X. { ~P A } ) ) |
||
| Assertion | efmnd | |- ( A e. V -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmnd.1 | |- G = ( EndoFMnd ` A ) |
|
| 2 | efmnd.2 | |- B = ( A ^m A ) |
|
| 3 | efmnd.3 | |- .+ = ( f e. B , g e. B |-> ( f o. g ) ) |
|
| 4 | efmnd.4 | |- J = ( Xt_ ` ( A X. { ~P A } ) ) |
|
| 5 | elex | |- ( A e. V -> A e. _V ) |
|
| 6 | ovexd | |- ( a = A -> ( a ^m a ) e. _V ) |
|
| 7 | id | |- ( b = ( a ^m a ) -> b = ( a ^m a ) ) |
|
| 8 | id | |- ( a = A -> a = A ) |
|
| 9 | 8 8 | oveq12d | |- ( a = A -> ( a ^m a ) = ( A ^m A ) ) |
| 10 | 9 2 | eqtr4di | |- ( a = A -> ( a ^m a ) = B ) |
| 11 | 7 10 | sylan9eqr | |- ( ( a = A /\ b = ( a ^m a ) ) -> b = B ) |
| 12 | 11 | opeq2d | |- ( ( a = A /\ b = ( a ^m a ) ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , B >. ) |
| 13 | eqidd | |- ( ( a = A /\ b = ( a ^m a ) ) -> ( f o. g ) = ( f o. g ) ) |
|
| 14 | 11 11 13 | mpoeq123dv | |- ( ( a = A /\ b = ( a ^m a ) ) -> ( f e. b , g e. b |-> ( f o. g ) ) = ( f e. B , g e. B |-> ( f o. g ) ) ) |
| 15 | 14 3 | eqtr4di | |- ( ( a = A /\ b = ( a ^m a ) ) -> ( f e. b , g e. b |-> ( f o. g ) ) = .+ ) |
| 16 | 15 | opeq2d | |- ( ( a = A /\ b = ( a ^m a ) ) -> <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. = <. ( +g ` ndx ) , .+ >. ) |
| 17 | simpl | |- ( ( a = A /\ b = ( a ^m a ) ) -> a = A ) |
|
| 18 | pweq | |- ( a = A -> ~P a = ~P A ) |
|
| 19 | 18 | sneqd | |- ( a = A -> { ~P a } = { ~P A } ) |
| 20 | 19 | adantr | |- ( ( a = A /\ b = ( a ^m a ) ) -> { ~P a } = { ~P A } ) |
| 21 | 17 20 | xpeq12d | |- ( ( a = A /\ b = ( a ^m a ) ) -> ( a X. { ~P a } ) = ( A X. { ~P A } ) ) |
| 22 | 21 | fveq2d | |- ( ( a = A /\ b = ( a ^m a ) ) -> ( Xt_ ` ( a X. { ~P a } ) ) = ( Xt_ ` ( A X. { ~P A } ) ) ) |
| 23 | 22 4 | eqtr4di | |- ( ( a = A /\ b = ( a ^m a ) ) -> ( Xt_ ` ( a X. { ~P a } ) ) = J ) |
| 24 | 23 | opeq2d | |- ( ( a = A /\ b = ( a ^m a ) ) -> <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. = <. ( TopSet ` ndx ) , J >. ) |
| 25 | 12 16 24 | tpeq123d | |- ( ( a = A /\ b = ( a ^m a ) ) -> { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 26 | 6 25 | csbied | |- ( a = A -> [_ ( a ^m a ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 27 | df-efmnd | |- EndoFMnd = ( a e. _V |-> [_ ( a ^m a ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( a X. { ~P a } ) ) >. } ) |
|
| 28 | tpex | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } e. _V |
|
| 29 | 26 27 28 | fvmpt | |- ( A e. _V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 30 | 5 29 | syl | |- ( A e. V -> ( EndoFMnd ` A ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |
| 31 | 1 30 | eqtrid | |- ( A e. V -> G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } ) |