This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015) (Proof shortened by AV, 29-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| symgbas.2 | |- B = ( Base ` G ) |
||
| Assertion | symgbas | |- B = { x | x : A -1-1-onto-> A } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgbas.2 | |- B = ( Base ` G ) |
|
| 3 | eqid | |- { x | x : A -1-1-onto-> A } = { x | x : A -1-1-onto-> A } |
|
| 4 | 1 3 | symgval | |- G = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) |
| 5 | 4 | eqcomi | |- ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = G |
| 6 | 5 | fveq2i | |- ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) = ( Base ` G ) |
| 7 | f1of | |- ( x : A -1-1-onto-> A -> x : A --> A ) |
|
| 8 | 7 | ss2abi | |- { x | x : A -1-1-onto-> A } C_ { x | x : A --> A } |
| 9 | eqid | |- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) |
|
| 10 | eqid | |- ( Base ` ( EndoFMnd ` A ) ) = ( Base ` ( EndoFMnd ` A ) ) |
|
| 11 | 9 10 | efmndbasabf | |- ( Base ` ( EndoFMnd ` A ) ) = { x | x : A --> A } |
| 12 | 8 11 | sseqtrri | |- { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) |
| 13 | eqid | |- ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) |
|
| 14 | 13 10 | ressbas2 | |- ( { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) -> { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) ) |
| 15 | 12 14 | ax-mp | |- { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) |
| 16 | 6 15 2 | 3eqtr4ri | |- B = { x | x : A -1-1-onto-> A } |