This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a singleton A is identical with the monoid of endofunctions on A . (Contributed by AV, 31-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snsymgefmndeq | |- ( A = { X } -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd | |- ( X e. _V -> { { <. X , X >. } } C_ { { <. X , X >. } } ) |
|
| 2 | eqid | |- ( EndoFMnd ` { X } ) = ( EndoFMnd ` { X } ) |
|
| 3 | eqid | |- ( Base ` ( EndoFMnd ` { X } ) ) = ( Base ` ( EndoFMnd ` { X } ) ) |
|
| 4 | eqid | |- { X } = { X } |
|
| 5 | 2 3 4 | efmnd1bas | |- ( X e. _V -> ( Base ` ( EndoFMnd ` { X } ) ) = { { <. X , X >. } } ) |
| 6 | eqid | |- ( SymGrp ` { X } ) = ( SymGrp ` { X } ) |
|
| 7 | eqid | |- ( Base ` ( SymGrp ` { X } ) ) = ( Base ` ( SymGrp ` { X } ) ) |
|
| 8 | 6 7 4 | symg1bas | |- ( X e. _V -> ( Base ` ( SymGrp ` { X } ) ) = { { <. X , X >. } } ) |
| 9 | 1 5 8 | 3sstr4d | |- ( X e. _V -> ( Base ` ( EndoFMnd ` { X } ) ) C_ ( Base ` ( SymGrp ` { X } ) ) ) |
| 10 | fvexd | |- ( X e. _V -> ( EndoFMnd ` { X } ) e. _V ) |
|
| 11 | fvexd | |- ( X e. _V -> ( Base ` ( SymGrp ` { X } ) ) e. _V ) |
|
| 12 | 6 7 2 | symgressbas | |- ( SymGrp ` { X } ) = ( ( EndoFMnd ` { X } ) |`s ( Base ` ( SymGrp ` { X } ) ) ) |
| 13 | 12 3 | ressid2 | |- ( ( ( Base ` ( EndoFMnd ` { X } ) ) C_ ( Base ` ( SymGrp ` { X } ) ) /\ ( EndoFMnd ` { X } ) e. _V /\ ( Base ` ( SymGrp ` { X } ) ) e. _V ) -> ( SymGrp ` { X } ) = ( EndoFMnd ` { X } ) ) |
| 14 | 9 10 11 13 | syl3anc | |- ( X e. _V -> ( SymGrp ` { X } ) = ( EndoFMnd ` { X } ) ) |
| 15 | 14 | eqcomd | |- ( X e. _V -> ( EndoFMnd ` { X } ) = ( SymGrp ` { X } ) ) |
| 16 | fveq2 | |- ( A = { X } -> ( EndoFMnd ` A ) = ( EndoFMnd ` { X } ) ) |
|
| 17 | fveq2 | |- ( A = { X } -> ( SymGrp ` A ) = ( SymGrp ` { X } ) ) |
|
| 18 | 16 17 | eqeq12d | |- ( A = { X } -> ( ( EndoFMnd ` A ) = ( SymGrp ` A ) <-> ( EndoFMnd ` { X } ) = ( SymGrp ` { X } ) ) ) |
| 19 | 15 18 | syl5ibrcom | |- ( X e. _V -> ( A = { X } -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) ) |
| 20 | snprc | |- ( -. X e. _V <-> { X } = (/) ) |
|
| 21 | 20 | biimpi | |- ( -. X e. _V -> { X } = (/) ) |
| 22 | 21 | eqeq2d | |- ( -. X e. _V -> ( A = { X } <-> A = (/) ) ) |
| 23 | 0symgefmndeq | |- ( EndoFMnd ` (/) ) = ( SymGrp ` (/) ) |
|
| 24 | fveq2 | |- ( A = (/) -> ( EndoFMnd ` A ) = ( EndoFMnd ` (/) ) ) |
|
| 25 | fveq2 | |- ( A = (/) -> ( SymGrp ` A ) = ( SymGrp ` (/) ) ) |
|
| 26 | 23 24 25 | 3eqtr4a | |- ( A = (/) -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) |
| 27 | 22 26 | biimtrdi | |- ( -. X e. _V -> ( A = { X } -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) ) |
| 28 | 19 27 | pm2.61i | |- ( A = { X } -> ( EndoFMnd ` A ) = ( SymGrp ` A ) ) |