This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the symmetric group on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symgbas0 | |- ( Base ` ( SymGrp ` (/) ) ) = { (/) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- (/) = (/) |
|
| 2 | f1o00 | |- ( f : (/) -1-1-onto-> (/) <-> ( f = (/) /\ (/) = (/) ) ) |
|
| 3 | 1 2 | mpbiran2 | |- ( f : (/) -1-1-onto-> (/) <-> f = (/) ) |
| 4 | 3 | abbii | |- { f | f : (/) -1-1-onto-> (/) } = { f | f = (/) } |
| 5 | eqid | |- ( SymGrp ` (/) ) = ( SymGrp ` (/) ) |
|
| 6 | eqid | |- ( Base ` ( SymGrp ` (/) ) ) = ( Base ` ( SymGrp ` (/) ) ) |
|
| 7 | 5 6 | symgbas | |- ( Base ` ( SymGrp ` (/) ) ) = { f | f : (/) -1-1-onto-> (/) } |
| 8 | df-sn | |- { (/) } = { f | f = (/) } |
|
| 9 | 4 7 8 | 3eqtr4i | |- ( Base ` ( SymGrp ` (/) ) ) = { (/) } |