This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgsubmefmnd.m | |- M = ( EndoFMnd ` A ) |
|
| symgsubmefmnd.g | |- G = ( SymGrp ` A ) |
||
| symgsubmefmnd.b | |- B = ( Base ` G ) |
||
| Assertion | symgsubmefmnd | |- ( A e. V -> B e. ( SubMnd ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgsubmefmnd.m | |- M = ( EndoFMnd ` A ) |
|
| 2 | symgsubmefmnd.g | |- G = ( SymGrp ` A ) |
|
| 3 | symgsubmefmnd.b | |- B = ( Base ` G ) |
|
| 4 | 2 3 | symgbas | |- B = { f | f : A -1-1-onto-> A } |
| 5 | inab | |- ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) = { f | ( f : A -1-1-> A /\ f : A -onto-> A ) } |
|
| 6 | df-f1o | |- ( f : A -1-1-onto-> A <-> ( f : A -1-1-> A /\ f : A -onto-> A ) ) |
|
| 7 | 6 | bicomi | |- ( ( f : A -1-1-> A /\ f : A -onto-> A ) <-> f : A -1-1-onto-> A ) |
| 8 | 7 | abbii | |- { f | ( f : A -1-1-> A /\ f : A -onto-> A ) } = { f | f : A -1-1-onto-> A } |
| 9 | 5 8 | eqtr2i | |- { f | f : A -1-1-onto-> A } = ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) |
| 10 | 1 | injsubmefmnd | |- ( A e. V -> { f | f : A -1-1-> A } e. ( SubMnd ` M ) ) |
| 11 | 1 | sursubmefmnd | |- ( A e. V -> { f | f : A -onto-> A } e. ( SubMnd ` M ) ) |
| 12 | insubm | |- ( ( { f | f : A -1-1-> A } e. ( SubMnd ` M ) /\ { f | f : A -onto-> A } e. ( SubMnd ` M ) ) -> ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) e. ( SubMnd ` M ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( A e. V -> ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) e. ( SubMnd ` M ) ) |
| 14 | 9 13 | eqeltrid | |- ( A e. V -> { f | f : A -1-1-onto-> A } e. ( SubMnd ` M ) ) |
| 15 | 4 14 | eqeltrid | |- ( A e. V -> B e. ( SubMnd ` M ) ) |