This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A converges to C , then F converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem8.1 | |- F/ n ph |
|
| stirlinglem8.2 | |- F/_ n A |
||
| stirlinglem8.3 | |- F/_ n D |
||
| stirlinglem8.4 | |- D = ( n e. NN |-> ( A ` ( 2 x. n ) ) ) |
||
| stirlinglem8.5 | |- ( ph -> A : NN --> RR+ ) |
||
| stirlinglem8.6 | |- F = ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
||
| stirlinglem8.7 | |- L = ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) |
||
| stirlinglem8.8 | |- M = ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) |
||
| stirlinglem8.9 | |- ( ( ph /\ n e. NN ) -> ( D ` n ) e. RR+ ) |
||
| stirlinglem8.10 | |- ( ph -> C e. RR+ ) |
||
| stirlinglem8.11 | |- ( ph -> A ~~> C ) |
||
| Assertion | stirlinglem8 | |- ( ph -> F ~~> ( C ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem8.1 | |- F/ n ph |
|
| 2 | stirlinglem8.2 | |- F/_ n A |
|
| 3 | stirlinglem8.3 | |- F/_ n D |
|
| 4 | stirlinglem8.4 | |- D = ( n e. NN |-> ( A ` ( 2 x. n ) ) ) |
|
| 5 | stirlinglem8.5 | |- ( ph -> A : NN --> RR+ ) |
|
| 6 | stirlinglem8.6 | |- F = ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
|
| 7 | stirlinglem8.7 | |- L = ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) |
|
| 8 | stirlinglem8.8 | |- M = ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) |
|
| 9 | stirlinglem8.9 | |- ( ( ph /\ n e. NN ) -> ( D ` n ) e. RR+ ) |
|
| 10 | stirlinglem8.10 | |- ( ph -> C e. RR+ ) |
|
| 11 | stirlinglem8.11 | |- ( ph -> A ~~> C ) |
|
| 12 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) |
|
| 13 | 7 12 | nfcxfr | |- F/_ n L |
| 14 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) |
|
| 15 | 8 14 | nfcxfr | |- F/_ n M |
| 16 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
|
| 17 | 6 16 | nfcxfr | |- F/_ n F |
| 18 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 19 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 20 | rrpsscn | |- RR+ C_ CC |
|
| 21 | fss | |- ( ( A : NN --> RR+ /\ RR+ C_ CC ) -> A : NN --> CC ) |
|
| 22 | 5 20 21 | sylancl | |- ( ph -> A : NN --> CC ) |
| 23 | 4nn0 | |- 4 e. NN0 |
|
| 24 | 23 | a1i | |- ( ph -> 4 e. NN0 ) |
| 25 | nnex | |- NN e. _V |
|
| 26 | 25 | mptex | |- ( n e. NN |-> ( ( A ` n ) ^ 4 ) ) e. _V |
| 27 | 7 26 | eqeltri | |- L e. _V |
| 28 | 27 | a1i | |- ( ph -> L e. _V ) |
| 29 | simpr | |- ( ( ph /\ n e. NN ) -> n e. NN ) |
|
| 30 | 5 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( A ` n ) e. RR+ ) |
| 31 | 30 | rpcnd | |- ( ( ph /\ n e. NN ) -> ( A ` n ) e. CC ) |
| 32 | 23 | a1i | |- ( ( ph /\ n e. NN ) -> 4 e. NN0 ) |
| 33 | 31 32 | expcld | |- ( ( ph /\ n e. NN ) -> ( ( A ` n ) ^ 4 ) e. CC ) |
| 34 | 7 | fvmpt2 | |- ( ( n e. NN /\ ( ( A ` n ) ^ 4 ) e. CC ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
| 35 | 29 33 34 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
| 36 | 1 2 13 18 19 22 11 24 28 35 | climexp | |- ( ph -> L ~~> ( C ^ 4 ) ) |
| 37 | 25 | mptex | |- ( n e. NN |-> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) e. _V |
| 38 | 6 37 | eqeltri | |- F e. _V |
| 39 | 38 | a1i | |- ( ph -> F e. _V ) |
| 40 | 22 | adantr | |- ( ( ph /\ n e. NN ) -> A : NN --> CC ) |
| 41 | 2nn | |- 2 e. NN |
|
| 42 | 41 | a1i | |- ( n e. NN -> 2 e. NN ) |
| 43 | id | |- ( n e. NN -> n e. NN ) |
|
| 44 | 42 43 | nnmulcld | |- ( n e. NN -> ( 2 x. n ) e. NN ) |
| 45 | 44 | adantl | |- ( ( ph /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
| 46 | 40 45 | ffvelcdmd | |- ( ( ph /\ n e. NN ) -> ( A ` ( 2 x. n ) ) e. CC ) |
| 47 | 1 46 4 | fmptdf | |- ( ph -> D : NN --> CC ) |
| 48 | nfmpt1 | |- F/_ n ( n e. NN |-> ( 2 x. n ) ) |
|
| 49 | fex | |- ( ( A : NN --> CC /\ NN e. _V ) -> A e. _V ) |
|
| 50 | 22 25 49 | sylancl | |- ( ph -> A e. _V ) |
| 51 | 1nn | |- 1 e. NN |
|
| 52 | 2cnd | |- ( ph -> 2 e. CC ) |
|
| 53 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 54 | 52 53 | mulcld | |- ( ph -> ( 2 x. 1 ) e. CC ) |
| 55 | oveq2 | |- ( n = 1 -> ( 2 x. n ) = ( 2 x. 1 ) ) |
|
| 56 | eqid | |- ( n e. NN |-> ( 2 x. n ) ) = ( n e. NN |-> ( 2 x. n ) ) |
|
| 57 | 55 56 | fvmptg | |- ( ( 1 e. NN /\ ( 2 x. 1 ) e. CC ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` 1 ) = ( 2 x. 1 ) ) |
| 58 | 51 54 57 | sylancr | |- ( ph -> ( ( n e. NN |-> ( 2 x. n ) ) ` 1 ) = ( 2 x. 1 ) ) |
| 59 | 41 | a1i | |- ( ph -> 2 e. NN ) |
| 60 | 51 | a1i | |- ( ph -> 1 e. NN ) |
| 61 | 59 60 | nnmulcld | |- ( ph -> ( 2 x. 1 ) e. NN ) |
| 62 | 58 61 | eqeltrd | |- ( ph -> ( ( n e. NN |-> ( 2 x. n ) ) ` 1 ) e. NN ) |
| 63 | 1red | |- ( n e. NN -> 1 e. RR ) |
|
| 64 | 42 | nnred | |- ( n e. NN -> 2 e. RR ) |
| 65 | 44 | nnred | |- ( n e. NN -> ( 2 x. n ) e. RR ) |
| 66 | 42 | nnge1d | |- ( n e. NN -> 1 <_ 2 ) |
| 67 | 63 64 65 66 | leadd2dd | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) <_ ( ( 2 x. n ) + 2 ) ) |
| 68 | 56 | fvmpt2 | |- ( ( n e. NN /\ ( 2 x. n ) e. NN ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) = ( 2 x. n ) ) |
| 69 | 44 68 | mpdan | |- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) = ( 2 x. n ) ) |
| 70 | 69 | oveq1d | |- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) = ( ( 2 x. n ) + 1 ) ) |
| 71 | oveq2 | |- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
|
| 72 | 71 | cbvmptv | |- ( n e. NN |-> ( 2 x. n ) ) = ( k e. NN |-> ( 2 x. k ) ) |
| 73 | 72 | a1i | |- ( n e. NN -> ( n e. NN |-> ( 2 x. n ) ) = ( k e. NN |-> ( 2 x. k ) ) ) |
| 74 | simpr | |- ( ( n e. NN /\ k = ( n + 1 ) ) -> k = ( n + 1 ) ) |
|
| 75 | 74 | oveq2d | |- ( ( n e. NN /\ k = ( n + 1 ) ) -> ( 2 x. k ) = ( 2 x. ( n + 1 ) ) ) |
| 76 | peano2nn | |- ( n e. NN -> ( n + 1 ) e. NN ) |
|
| 77 | 42 76 | nnmulcld | |- ( n e. NN -> ( 2 x. ( n + 1 ) ) e. NN ) |
| 78 | 73 75 76 77 | fvmptd | |- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) = ( 2 x. ( n + 1 ) ) ) |
| 79 | 2cnd | |- ( n e. NN -> 2 e. CC ) |
|
| 80 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 81 | 1cnd | |- ( n e. NN -> 1 e. CC ) |
|
| 82 | 79 80 81 | adddid | |- ( n e. NN -> ( 2 x. ( n + 1 ) ) = ( ( 2 x. n ) + ( 2 x. 1 ) ) ) |
| 83 | 79 | mulridd | |- ( n e. NN -> ( 2 x. 1 ) = 2 ) |
| 84 | 83 | oveq2d | |- ( n e. NN -> ( ( 2 x. n ) + ( 2 x. 1 ) ) = ( ( 2 x. n ) + 2 ) ) |
| 85 | 78 82 84 | 3eqtrd | |- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) = ( ( 2 x. n ) + 2 ) ) |
| 86 | 67 70 85 | 3brtr4d | |- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) <_ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) ) |
| 87 | 44 | nnzd | |- ( n e. NN -> ( 2 x. n ) e. ZZ ) |
| 88 | 69 87 | eqeltrd | |- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) e. ZZ ) |
| 89 | 88 | peano2zd | |- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) e. ZZ ) |
| 90 | 77 | nnzd | |- ( n e. NN -> ( 2 x. ( n + 1 ) ) e. ZZ ) |
| 91 | 78 90 | eqeltrd | |- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ZZ ) |
| 92 | eluz | |- ( ( ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) e. ZZ /\ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ZZ ) -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) <-> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) <_ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) ) ) |
|
| 93 | 89 91 92 | syl2anc | |- ( n e. NN -> ( ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) <-> ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) <_ ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) ) ) |
| 94 | 86 93 | mpbird | |- ( n e. NN -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) ) |
| 95 | 94 | adantl | |- ( ( ph /\ n e. NN ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` ( n + 1 ) ) e. ( ZZ>= ` ( ( ( n e. NN |-> ( 2 x. n ) ) ` n ) + 1 ) ) ) |
| 96 | 25 | mptex | |- ( n e. NN |-> ( A ` ( 2 x. n ) ) ) e. _V |
| 97 | 4 96 | eqeltri | |- D e. _V |
| 98 | 97 | a1i | |- ( ph -> D e. _V ) |
| 99 | 4 | fvmpt2 | |- ( ( n e. NN /\ ( A ` ( 2 x. n ) ) e. CC ) -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) |
| 100 | 29 46 99 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( D ` n ) = ( A ` ( 2 x. n ) ) ) |
| 101 | 69 | adantl | |- ( ( ph /\ n e. NN ) -> ( ( n e. NN |-> ( 2 x. n ) ) ` n ) = ( 2 x. n ) ) |
| 102 | 101 | eqcomd | |- ( ( ph /\ n e. NN ) -> ( 2 x. n ) = ( ( n e. NN |-> ( 2 x. n ) ) ` n ) ) |
| 103 | 102 | fveq2d | |- ( ( ph /\ n e. NN ) -> ( A ` ( 2 x. n ) ) = ( A ` ( ( n e. NN |-> ( 2 x. n ) ) ` n ) ) ) |
| 104 | 100 103 | eqtrd | |- ( ( ph /\ n e. NN ) -> ( D ` n ) = ( A ` ( ( n e. NN |-> ( 2 x. n ) ) ` n ) ) ) |
| 105 | 1 2 3 48 18 19 50 31 11 62 95 98 104 | climsuse | |- ( ph -> D ~~> C ) |
| 106 | 2nn0 | |- 2 e. NN0 |
|
| 107 | 106 | a1i | |- ( ph -> 2 e. NN0 ) |
| 108 | 25 | mptex | |- ( n e. NN |-> ( ( D ` n ) ^ 2 ) ) e. _V |
| 109 | 8 108 | eqeltri | |- M e. _V |
| 110 | 109 | a1i | |- ( ph -> M e. _V ) |
| 111 | 9 | rpcnd | |- ( ( ph /\ n e. NN ) -> ( D ` n ) e. CC ) |
| 112 | 111 | sqcld | |- ( ( ph /\ n e. NN ) -> ( ( D ` n ) ^ 2 ) e. CC ) |
| 113 | 8 | fvmpt2 | |- ( ( n e. NN /\ ( ( D ` n ) ^ 2 ) e. CC ) -> ( M ` n ) = ( ( D ` n ) ^ 2 ) ) |
| 114 | 29 112 113 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( M ` n ) = ( ( D ` n ) ^ 2 ) ) |
| 115 | 1 3 15 18 19 47 105 107 110 114 | climexp | |- ( ph -> M ~~> ( C ^ 2 ) ) |
| 116 | 10 | rpcnd | |- ( ph -> C e. CC ) |
| 117 | 10 | rpne0d | |- ( ph -> C =/= 0 ) |
| 118 | 2z | |- 2 e. ZZ |
|
| 119 | 118 | a1i | |- ( ph -> 2 e. ZZ ) |
| 120 | 116 117 119 | expne0d | |- ( ph -> ( C ^ 2 ) =/= 0 ) |
| 121 | 1 33 7 | fmptdf | |- ( ph -> L : NN --> CC ) |
| 122 | 121 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( L ` n ) e. CC ) |
| 123 | 114 112 | eqeltrd | |- ( ( ph /\ n e. NN ) -> ( M ` n ) e. CC ) |
| 124 | 100 | oveq1d | |- ( ( ph /\ n e. NN ) -> ( ( D ` n ) ^ 2 ) = ( ( A ` ( 2 x. n ) ) ^ 2 ) ) |
| 125 | 114 124 | eqtrd | |- ( ( ph /\ n e. NN ) -> ( M ` n ) = ( ( A ` ( 2 x. n ) ) ^ 2 ) ) |
| 126 | 100 9 | eqeltrrd | |- ( ( ph /\ n e. NN ) -> ( A ` ( 2 x. n ) ) e. RR+ ) |
| 127 | 118 | a1i | |- ( ( ph /\ n e. NN ) -> 2 e. ZZ ) |
| 128 | 126 127 | rpexpcld | |- ( ( ph /\ n e. NN ) -> ( ( A ` ( 2 x. n ) ) ^ 2 ) e. RR+ ) |
| 129 | 125 128 | eqeltrd | |- ( ( ph /\ n e. NN ) -> ( M ` n ) e. RR+ ) |
| 130 | 129 | rpne0d | |- ( ( ph /\ n e. NN ) -> ( M ` n ) =/= 0 ) |
| 131 | 130 | neneqd | |- ( ( ph /\ n e. NN ) -> -. ( M ` n ) = 0 ) |
| 132 | 0cn | |- 0 e. CC |
|
| 133 | elsn2g | |- ( 0 e. CC -> ( ( M ` n ) e. { 0 } <-> ( M ` n ) = 0 ) ) |
|
| 134 | 132 133 | ax-mp | |- ( ( M ` n ) e. { 0 } <-> ( M ` n ) = 0 ) |
| 135 | 131 134 | sylnibr | |- ( ( ph /\ n e. NN ) -> -. ( M ` n ) e. { 0 } ) |
| 136 | 123 135 | eldifd | |- ( ( ph /\ n e. NN ) -> ( M ` n ) e. ( CC \ { 0 } ) ) |
| 137 | 32 | nn0zd | |- ( ( ph /\ n e. NN ) -> 4 e. ZZ ) |
| 138 | 30 137 | rpexpcld | |- ( ( ph /\ n e. NN ) -> ( ( A ` n ) ^ 4 ) e. RR+ ) |
| 139 | 9 127 | rpexpcld | |- ( ( ph /\ n e. NN ) -> ( ( D ` n ) ^ 2 ) e. RR+ ) |
| 140 | 138 139 | rpdivcld | |- ( ( ph /\ n e. NN ) -> ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. RR+ ) |
| 141 | 6 | fvmpt2 | |- ( ( n e. NN /\ ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) e. RR+ ) -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 142 | 29 140 141 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 143 | 7 | fvmpt2 | |- ( ( n e. NN /\ ( ( A ` n ) ^ 4 ) e. RR+ ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
| 144 | 29 138 143 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( L ` n ) = ( ( A ` n ) ^ 4 ) ) |
| 145 | 144 114 | oveq12d | |- ( ( ph /\ n e. NN ) -> ( ( L ` n ) / ( M ` n ) ) = ( ( ( A ` n ) ^ 4 ) / ( ( D ` n ) ^ 2 ) ) ) |
| 146 | 142 145 | eqtr4d | |- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( ( L ` n ) / ( M ` n ) ) ) |
| 147 | 1 13 15 17 18 19 36 39 115 120 122 136 146 | climdivf | |- ( ph -> F ~~> ( ( C ^ 4 ) / ( C ^ 2 ) ) ) |
| 148 | 2cn | |- 2 e. CC |
|
| 149 | 2p2e4 | |- ( 2 + 2 ) = 4 |
|
| 150 | 148 148 149 | mvlladdi | |- 2 = ( 4 - 2 ) |
| 151 | 150 | a1i | |- ( ph -> 2 = ( 4 - 2 ) ) |
| 152 | 151 | oveq2d | |- ( ph -> ( C ^ 2 ) = ( C ^ ( 4 - 2 ) ) ) |
| 153 | 24 | nn0zd | |- ( ph -> 4 e. ZZ ) |
| 154 | 116 117 119 153 | expsubd | |- ( ph -> ( C ^ ( 4 - 2 ) ) = ( ( C ^ 4 ) / ( C ^ 2 ) ) ) |
| 155 | 152 154 | eqtrd | |- ( ph -> ( C ^ 2 ) = ( ( C ^ 4 ) / ( C ^ 2 ) ) ) |
| 156 | 147 155 | breqtrrd | |- ( ph -> F ~~> ( C ^ 2 ) ) |