This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqdistr.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqdistr.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( C T ( x .+ y ) ) = ( ( C T x ) .+ ( C T y ) ) ) |
||
| seqdistr.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqdistr.4 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( G ` x ) e. S ) |
||
| seqdistr.5 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = ( C T ( G ` x ) ) ) |
||
| Assertion | seqdistr | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( C T ( seq M ( .+ , G ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqdistr.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqdistr.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( C T ( x .+ y ) ) = ( ( C T x ) .+ ( C T y ) ) ) |
|
| 3 | seqdistr.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | seqdistr.4 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( G ` x ) e. S ) |
|
| 5 | seqdistr.5 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = ( C T ( G ` x ) ) ) |
|
| 6 | oveq2 | |- ( z = ( x .+ y ) -> ( C T z ) = ( C T ( x .+ y ) ) ) |
|
| 7 | eqid | |- ( z e. S |-> ( C T z ) ) = ( z e. S |-> ( C T z ) ) |
|
| 8 | ovex | |- ( C T ( x .+ y ) ) e. _V |
|
| 9 | 6 7 8 | fvmpt | |- ( ( x .+ y ) e. S -> ( ( z e. S |-> ( C T z ) ) ` ( x .+ y ) ) = ( C T ( x .+ y ) ) ) |
| 10 | 1 9 | syl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( x .+ y ) ) = ( C T ( x .+ y ) ) ) |
| 11 | oveq2 | |- ( z = x -> ( C T z ) = ( C T x ) ) |
|
| 12 | ovex | |- ( C T x ) e. _V |
|
| 13 | 11 7 12 | fvmpt | |- ( x e. S -> ( ( z e. S |-> ( C T z ) ) ` x ) = ( C T x ) ) |
| 14 | 13 | ad2antrl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` x ) = ( C T x ) ) |
| 15 | oveq2 | |- ( z = y -> ( C T z ) = ( C T y ) ) |
|
| 16 | ovex | |- ( C T y ) e. _V |
|
| 17 | 15 7 16 | fvmpt | |- ( y e. S -> ( ( z e. S |-> ( C T z ) ) ` y ) = ( C T y ) ) |
| 18 | 17 | ad2antll | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` y ) = ( C T y ) ) |
| 19 | 14 18 | oveq12d | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( ( z e. S |-> ( C T z ) ) ` x ) .+ ( ( z e. S |-> ( C T z ) ) ` y ) ) = ( ( C T x ) .+ ( C T y ) ) ) |
| 20 | 2 10 19 | 3eqtr4d | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( x .+ y ) ) = ( ( ( z e. S |-> ( C T z ) ) ` x ) .+ ( ( z e. S |-> ( C T z ) ) ` y ) ) ) |
| 21 | oveq2 | |- ( z = ( G ` x ) -> ( C T z ) = ( C T ( G ` x ) ) ) |
|
| 22 | ovex | |- ( C T ( G ` x ) ) e. _V |
|
| 23 | 21 7 22 | fvmpt | |- ( ( G ` x ) e. S -> ( ( z e. S |-> ( C T z ) ) ` ( G ` x ) ) = ( C T ( G ` x ) ) ) |
| 24 | 4 23 | syl | |- ( ( ph /\ x e. ( M ... N ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( G ` x ) ) = ( C T ( G ` x ) ) ) |
| 25 | 24 5 | eqtr4d | |- ( ( ph /\ x e. ( M ... N ) ) -> ( ( z e. S |-> ( C T z ) ) ` ( G ` x ) ) = ( F ` x ) ) |
| 26 | 1 4 3 20 25 | seqhomo | |- ( ph -> ( ( z e. S |-> ( C T z ) ) ` ( seq M ( .+ , G ) ` N ) ) = ( seq M ( .+ , F ) ` N ) ) |
| 27 | 3 4 1 | seqcl | |- ( ph -> ( seq M ( .+ , G ) ` N ) e. S ) |
| 28 | oveq2 | |- ( z = ( seq M ( .+ , G ) ` N ) -> ( C T z ) = ( C T ( seq M ( .+ , G ) ` N ) ) ) |
|
| 29 | ovex | |- ( C T ( seq M ( .+ , G ) ` N ) ) e. _V |
|
| 30 | 28 7 29 | fvmpt | |- ( ( seq M ( .+ , G ) ` N ) e. S -> ( ( z e. S |-> ( C T z ) ) ` ( seq M ( .+ , G ) ` N ) ) = ( C T ( seq M ( .+ , G ) ` N ) ) ) |
| 31 | 27 30 | syl | |- ( ph -> ( ( z e. S |-> ( C T z ) ) ` ( seq M ( .+ , G ) ` N ) ) = ( C T ( seq M ( .+ , G ) ` N ) ) ) |
| 32 | 26 31 | eqtr3d | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( C T ( seq M ( .+ , G ) ` N ) ) ) |