This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence A converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem14.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| stirlinglem14.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
||
| Assertion | stirlinglem14 | |- E. c e. RR+ A ~~> c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem14.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 2 | stirlinglem14.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
|
| 3 | 1 2 | stirlinglem13 | |- E. d e. RR B ~~> d |
| 4 | simpl | |- ( ( d e. RR /\ B ~~> d ) -> d e. RR ) |
|
| 5 | 4 | rpefcld | |- ( ( d e. RR /\ B ~~> d ) -> ( exp ` d ) e. RR+ ) |
| 6 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 7 | 1zzd | |- ( ( d e. RR /\ B ~~> d ) -> 1 e. ZZ ) |
|
| 8 | efcn | |- exp e. ( CC -cn-> CC ) |
|
| 9 | 8 | a1i | |- ( ( d e. RR /\ B ~~> d ) -> exp e. ( CC -cn-> CC ) ) |
| 10 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 11 | faccl | |- ( n e. NN0 -> ( ! ` n ) e. NN ) |
|
| 12 | nncn | |- ( ( ! ` n ) e. NN -> ( ! ` n ) e. CC ) |
|
| 13 | 10 11 12 | 3syl | |- ( n e. NN -> ( ! ` n ) e. CC ) |
| 14 | 2cnd | |- ( n e. NN -> 2 e. CC ) |
|
| 15 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 16 | 14 15 | mulcld | |- ( n e. NN -> ( 2 x. n ) e. CC ) |
| 17 | 16 | sqrtcld | |- ( n e. NN -> ( sqrt ` ( 2 x. n ) ) e. CC ) |
| 18 | epr | |- _e e. RR+ |
|
| 19 | rpcn | |- ( _e e. RR+ -> _e e. CC ) |
|
| 20 | 18 19 | ax-mp | |- _e e. CC |
| 21 | 20 | a1i | |- ( n e. NN -> _e e. CC ) |
| 22 | 0re | |- 0 e. RR |
|
| 23 | epos | |- 0 < _e |
|
| 24 | 22 23 | gtneii | |- _e =/= 0 |
| 25 | 24 | a1i | |- ( n e. NN -> _e =/= 0 ) |
| 26 | 15 21 25 | divcld | |- ( n e. NN -> ( n / _e ) e. CC ) |
| 27 | 26 10 | expcld | |- ( n e. NN -> ( ( n / _e ) ^ n ) e. CC ) |
| 28 | 17 27 | mulcld | |- ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) e. CC ) |
| 29 | 2rp | |- 2 e. RR+ |
|
| 30 | 29 | a1i | |- ( n e. NN -> 2 e. RR+ ) |
| 31 | nnrp | |- ( n e. NN -> n e. RR+ ) |
|
| 32 | 30 31 | rpmulcld | |- ( n e. NN -> ( 2 x. n ) e. RR+ ) |
| 33 | 32 | sqrtgt0d | |- ( n e. NN -> 0 < ( sqrt ` ( 2 x. n ) ) ) |
| 34 | 33 | gt0ne0d | |- ( n e. NN -> ( sqrt ` ( 2 x. n ) ) =/= 0 ) |
| 35 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 36 | 15 21 35 25 | divne0d | |- ( n e. NN -> ( n / _e ) =/= 0 ) |
| 37 | nnz | |- ( n e. NN -> n e. ZZ ) |
|
| 38 | 26 36 37 | expne0d | |- ( n e. NN -> ( ( n / _e ) ^ n ) =/= 0 ) |
| 39 | 17 27 34 38 | mulne0d | |- ( n e. NN -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) =/= 0 ) |
| 40 | 13 28 39 | divcld | |- ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) |
| 41 | 1 | fvmpt2 | |- ( ( n e. NN /\ ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) e. CC ) -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 42 | 40 41 | mpdan | |- ( n e. NN -> ( A ` n ) = ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
| 43 | 42 40 | eqeltrd | |- ( n e. NN -> ( A ` n ) e. CC ) |
| 44 | nnne0 | |- ( ( ! ` n ) e. NN -> ( ! ` n ) =/= 0 ) |
|
| 45 | 10 11 44 | 3syl | |- ( n e. NN -> ( ! ` n ) =/= 0 ) |
| 46 | 13 28 45 39 | divne0d | |- ( n e. NN -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) =/= 0 ) |
| 47 | 42 46 | eqnetrd | |- ( n e. NN -> ( A ` n ) =/= 0 ) |
| 48 | 43 47 | logcld | |- ( n e. NN -> ( log ` ( A ` n ) ) e. CC ) |
| 49 | 2 48 | fmpti | |- B : NN --> CC |
| 50 | 49 | a1i | |- ( ( d e. RR /\ B ~~> d ) -> B : NN --> CC ) |
| 51 | simpr | |- ( ( d e. RR /\ B ~~> d ) -> B ~~> d ) |
|
| 52 | 4 | recnd | |- ( ( d e. RR /\ B ~~> d ) -> d e. CC ) |
| 53 | 6 7 9 50 51 52 | climcncf | |- ( ( d e. RR /\ B ~~> d ) -> ( exp o. B ) ~~> ( exp ` d ) ) |
| 54 | 8 | elexi | |- exp e. _V |
| 55 | nnex | |- NN e. _V |
|
| 56 | 55 | mptex | |- ( n e. NN |-> ( log ` ( A ` n ) ) ) e. _V |
| 57 | 2 56 | eqeltri | |- B e. _V |
| 58 | 54 57 | coex | |- ( exp o. B ) e. _V |
| 59 | 58 | a1i | |- ( T. -> ( exp o. B ) e. _V ) |
| 60 | 55 | mptex | |- ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) e. _V |
| 61 | 1 60 | eqeltri | |- A e. _V |
| 62 | 61 | a1i | |- ( T. -> A e. _V ) |
| 63 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 64 | 2 | funmpt2 | |- Fun B |
| 65 | id | |- ( k e. NN -> k e. NN ) |
|
| 66 | rabid2 | |- ( NN = { n e. NN | ( log ` ( A ` n ) ) e. _V } <-> A. n e. NN ( log ` ( A ` n ) ) e. _V ) |
|
| 67 | 1 | stirlinglem2 | |- ( n e. NN -> ( A ` n ) e. RR+ ) |
| 68 | relogcl | |- ( ( A ` n ) e. RR+ -> ( log ` ( A ` n ) ) e. RR ) |
|
| 69 | elex | |- ( ( log ` ( A ` n ) ) e. RR -> ( log ` ( A ` n ) ) e. _V ) |
|
| 70 | 67 68 69 | 3syl | |- ( n e. NN -> ( log ` ( A ` n ) ) e. _V ) |
| 71 | 66 70 | mprgbir | |- NN = { n e. NN | ( log ` ( A ` n ) ) e. _V } |
| 72 | 2 | dmmpt | |- dom B = { n e. NN | ( log ` ( A ` n ) ) e. _V } |
| 73 | 71 72 | eqtr4i | |- NN = dom B |
| 74 | 65 73 | eleqtrdi | |- ( k e. NN -> k e. dom B ) |
| 75 | fvco | |- ( ( Fun B /\ k e. dom B ) -> ( ( exp o. B ) ` k ) = ( exp ` ( B ` k ) ) ) |
|
| 76 | 64 74 75 | sylancr | |- ( k e. NN -> ( ( exp o. B ) ` k ) = ( exp ` ( B ` k ) ) ) |
| 77 | 1 | a1i | |- ( k e. NN -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) |
| 78 | simpr | |- ( ( k e. NN /\ n = k ) -> n = k ) |
|
| 79 | 78 | fveq2d | |- ( ( k e. NN /\ n = k ) -> ( ! ` n ) = ( ! ` k ) ) |
| 80 | 78 | oveq2d | |- ( ( k e. NN /\ n = k ) -> ( 2 x. n ) = ( 2 x. k ) ) |
| 81 | 80 | fveq2d | |- ( ( k e. NN /\ n = k ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. k ) ) ) |
| 82 | 78 | oveq1d | |- ( ( k e. NN /\ n = k ) -> ( n / _e ) = ( k / _e ) ) |
| 83 | 82 78 | oveq12d | |- ( ( k e. NN /\ n = k ) -> ( ( n / _e ) ^ n ) = ( ( k / _e ) ^ k ) ) |
| 84 | 81 83 | oveq12d | |- ( ( k e. NN /\ n = k ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) |
| 85 | 79 84 | oveq12d | |- ( ( k e. NN /\ n = k ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 86 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 87 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 88 | nncn | |- ( ( ! ` k ) e. NN -> ( ! ` k ) e. CC ) |
|
| 89 | 86 87 88 | 3syl | |- ( k e. NN -> ( ! ` k ) e. CC ) |
| 90 | 2cnd | |- ( k e. NN -> 2 e. CC ) |
|
| 91 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 92 | 90 91 | mulcld | |- ( k e. NN -> ( 2 x. k ) e. CC ) |
| 93 | 92 | sqrtcld | |- ( k e. NN -> ( sqrt ` ( 2 x. k ) ) e. CC ) |
| 94 | 20 | a1i | |- ( k e. NN -> _e e. CC ) |
| 95 | 24 | a1i | |- ( k e. NN -> _e =/= 0 ) |
| 96 | 91 94 95 | divcld | |- ( k e. NN -> ( k / _e ) e. CC ) |
| 97 | 96 86 | expcld | |- ( k e. NN -> ( ( k / _e ) ^ k ) e. CC ) |
| 98 | 93 97 | mulcld | |- ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) e. CC ) |
| 99 | 29 | a1i | |- ( k e. NN -> 2 e. RR+ ) |
| 100 | nnrp | |- ( k e. NN -> k e. RR+ ) |
|
| 101 | 99 100 | rpmulcld | |- ( k e. NN -> ( 2 x. k ) e. RR+ ) |
| 102 | 101 | sqrtgt0d | |- ( k e. NN -> 0 < ( sqrt ` ( 2 x. k ) ) ) |
| 103 | 102 | gt0ne0d | |- ( k e. NN -> ( sqrt ` ( 2 x. k ) ) =/= 0 ) |
| 104 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 105 | 91 94 104 95 | divne0d | |- ( k e. NN -> ( k / _e ) =/= 0 ) |
| 106 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 107 | 96 105 106 | expne0d | |- ( k e. NN -> ( ( k / _e ) ^ k ) =/= 0 ) |
| 108 | 93 97 103 107 | mulne0d | |- ( k e. NN -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) =/= 0 ) |
| 109 | 89 98 108 | divcld | |- ( k e. NN -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) e. CC ) |
| 110 | 77 85 65 109 | fvmptd | |- ( k e. NN -> ( A ` k ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 111 | 110 109 | eqeltrd | |- ( k e. NN -> ( A ` k ) e. CC ) |
| 112 | nnne0 | |- ( ( ! ` k ) e. NN -> ( ! ` k ) =/= 0 ) |
|
| 113 | 86 87 112 | 3syl | |- ( k e. NN -> ( ! ` k ) =/= 0 ) |
| 114 | 89 98 113 108 | divne0d | |- ( k e. NN -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) =/= 0 ) |
| 115 | 110 114 | eqnetrd | |- ( k e. NN -> ( A ` k ) =/= 0 ) |
| 116 | 111 115 | logcld | |- ( k e. NN -> ( log ` ( A ` k ) ) e. CC ) |
| 117 | nfcv | |- F/_ n k |
|
| 118 | nfcv | |- F/_ n log |
|
| 119 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 120 | 1 119 | nfcxfr | |- F/_ n A |
| 121 | 120 117 | nffv | |- F/_ n ( A ` k ) |
| 122 | 118 121 | nffv | |- F/_ n ( log ` ( A ` k ) ) |
| 123 | 2fveq3 | |- ( n = k -> ( log ` ( A ` n ) ) = ( log ` ( A ` k ) ) ) |
|
| 124 | 117 122 123 2 | fvmptf | |- ( ( k e. NN /\ ( log ` ( A ` k ) ) e. CC ) -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
| 125 | 116 124 | mpdan | |- ( k e. NN -> ( B ` k ) = ( log ` ( A ` k ) ) ) |
| 126 | 125 | fveq2d | |- ( k e. NN -> ( exp ` ( B ` k ) ) = ( exp ` ( log ` ( A ` k ) ) ) ) |
| 127 | eflog | |- ( ( ( A ` k ) e. CC /\ ( A ` k ) =/= 0 ) -> ( exp ` ( log ` ( A ` k ) ) ) = ( A ` k ) ) |
|
| 128 | 111 115 127 | syl2anc | |- ( k e. NN -> ( exp ` ( log ` ( A ` k ) ) ) = ( A ` k ) ) |
| 129 | 76 126 128 | 3eqtrd | |- ( k e. NN -> ( ( exp o. B ) ` k ) = ( A ` k ) ) |
| 130 | 129 | adantl | |- ( ( T. /\ k e. NN ) -> ( ( exp o. B ) ` k ) = ( A ` k ) ) |
| 131 | 6 59 62 63 130 | climeq | |- ( T. -> ( ( exp o. B ) ~~> ( exp ` d ) <-> A ~~> ( exp ` d ) ) ) |
| 132 | 131 | mptru | |- ( ( exp o. B ) ~~> ( exp ` d ) <-> A ~~> ( exp ` d ) ) |
| 133 | 53 132 | sylib | |- ( ( d e. RR /\ B ~~> d ) -> A ~~> ( exp ` d ) ) |
| 134 | breq2 | |- ( c = ( exp ` d ) -> ( A ~~> c <-> A ~~> ( exp ` d ) ) ) |
|
| 135 | 134 | rspcev | |- ( ( ( exp ` d ) e. RR+ /\ A ~~> ( exp ` d ) ) -> E. c e. RR+ A ~~> c ) |
| 136 | 5 133 135 | syl2anc | |- ( ( d e. RR /\ B ~~> d ) -> E. c e. RR+ A ~~> c ) |
| 137 | 136 | rexlimiva | |- ( E. d e. RR B ~~> d -> E. c e. RR+ A ~~> c ) |
| 138 | 3 137 | ax-mp | |- E. c e. RR+ A ~~> c |