This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: B is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem11.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| stirlinglem11.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
||
| stirlinglem11.3 | |- K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) |
||
| Assertion | stirlinglem11 | |- ( N e. NN -> ( B ` ( N + 1 ) ) < ( B ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem11.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 2 | stirlinglem11.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
|
| 3 | stirlinglem11.3 | |- K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) |
|
| 4 | 0red | |- ( N e. NN -> 0 e. RR ) |
|
| 5 | 3 | a1i | |- ( N e. NN -> K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) ) |
| 6 | simpr | |- ( ( N e. NN /\ k = 1 ) -> k = 1 ) |
|
| 7 | 6 | oveq2d | |- ( ( N e. NN /\ k = 1 ) -> ( 2 x. k ) = ( 2 x. 1 ) ) |
| 8 | 7 | oveq1d | |- ( ( N e. NN /\ k = 1 ) -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. 1 ) + 1 ) ) |
| 9 | 8 | oveq2d | |- ( ( N e. NN /\ k = 1 ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. 1 ) + 1 ) ) ) |
| 10 | 7 | oveq2d | |- ( ( N e. NN /\ k = 1 ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) |
| 11 | 9 10 | oveq12d | |- ( ( N e. NN /\ k = 1 ) -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) = ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) ) |
| 12 | 1nn | |- 1 e. NN |
|
| 13 | 12 | a1i | |- ( N e. NN -> 1 e. NN ) |
| 14 | 2cnd | |- ( N e. NN -> 2 e. CC ) |
|
| 15 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 16 | 14 15 | mulcld | |- ( N e. NN -> ( 2 x. 1 ) e. CC ) |
| 17 | 16 15 | addcld | |- ( N e. NN -> ( ( 2 x. 1 ) + 1 ) e. CC ) |
| 18 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 19 | 18 | oveq1i | |- ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) |
| 20 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 21 | 19 20 | eqtri | |- ( ( 2 x. 1 ) + 1 ) = 3 |
| 22 | 3ne0 | |- 3 =/= 0 |
|
| 23 | 21 22 | eqnetri | |- ( ( 2 x. 1 ) + 1 ) =/= 0 |
| 24 | 23 | a1i | |- ( N e. NN -> ( ( 2 x. 1 ) + 1 ) =/= 0 ) |
| 25 | 17 24 | reccld | |- ( N e. NN -> ( 1 / ( ( 2 x. 1 ) + 1 ) ) e. CC ) |
| 26 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 27 | 14 26 | mulcld | |- ( N e. NN -> ( 2 x. N ) e. CC ) |
| 28 | 27 15 | addcld | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 29 | 1red | |- ( N e. NN -> 1 e. RR ) |
|
| 30 | 2re | |- 2 e. RR |
|
| 31 | 30 | a1i | |- ( N e. NN -> 2 e. RR ) |
| 32 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 33 | 31 32 | remulcld | |- ( N e. NN -> ( 2 x. N ) e. RR ) |
| 34 | 33 29 | readdcld | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR ) |
| 35 | 0lt1 | |- 0 < 1 |
|
| 36 | 35 | a1i | |- ( N e. NN -> 0 < 1 ) |
| 37 | 2rp | |- 2 e. RR+ |
|
| 38 | 37 | a1i | |- ( N e. NN -> 2 e. RR+ ) |
| 39 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 40 | 38 39 | rpmulcld | |- ( N e. NN -> ( 2 x. N ) e. RR+ ) |
| 41 | 29 40 | ltaddrp2d | |- ( N e. NN -> 1 < ( ( 2 x. N ) + 1 ) ) |
| 42 | 4 29 34 36 41 | lttrd | |- ( N e. NN -> 0 < ( ( 2 x. N ) + 1 ) ) |
| 43 | 42 | gt0ne0d | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 44 | 28 43 | reccld | |- ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 45 | 2nn0 | |- 2 e. NN0 |
|
| 46 | 45 | a1i | |- ( N e. NN -> 2 e. NN0 ) |
| 47 | 1nn0 | |- 1 e. NN0 |
|
| 48 | 47 | a1i | |- ( N e. NN -> 1 e. NN0 ) |
| 49 | 46 48 | nn0mulcld | |- ( N e. NN -> ( 2 x. 1 ) e. NN0 ) |
| 50 | 44 49 | expcld | |- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) e. CC ) |
| 51 | 25 50 | mulcld | |- ( N e. NN -> ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) e. CC ) |
| 52 | 5 11 13 51 | fvmptd | |- ( N e. NN -> ( K ` 1 ) = ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) ) |
| 53 | 1re | |- 1 e. RR |
|
| 54 | 30 53 | remulcli | |- ( 2 x. 1 ) e. RR |
| 55 | 54 53 | readdcli | |- ( ( 2 x. 1 ) + 1 ) e. RR |
| 56 | 55 23 | rereccli | |- ( 1 / ( ( 2 x. 1 ) + 1 ) ) e. RR |
| 57 | 56 | a1i | |- ( N e. NN -> ( 1 / ( ( 2 x. 1 ) + 1 ) ) e. RR ) |
| 58 | 34 43 | rereccld | |- ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR ) |
| 59 | 58 49 | reexpcld | |- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) e. RR ) |
| 60 | 57 59 | remulcld | |- ( N e. NN -> ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) e. RR ) |
| 61 | 52 60 | eqeltrd | |- ( N e. NN -> ( K ` 1 ) e. RR ) |
| 62 | 1 | stirlinglem2 | |- ( N e. NN -> ( A ` N ) e. RR+ ) |
| 63 | 62 | relogcld | |- ( N e. NN -> ( log ` ( A ` N ) ) e. RR ) |
| 64 | nfcv | |- F/_ n N |
|
| 65 | nfcv | |- F/_ n log |
|
| 66 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 67 | 1 66 | nfcxfr | |- F/_ n A |
| 68 | 67 64 | nffv | |- F/_ n ( A ` N ) |
| 69 | 65 68 | nffv | |- F/_ n ( log ` ( A ` N ) ) |
| 70 | 2fveq3 | |- ( n = N -> ( log ` ( A ` n ) ) = ( log ` ( A ` N ) ) ) |
|
| 71 | 64 69 70 2 | fvmptf | |- ( ( N e. NN /\ ( log ` ( A ` N ) ) e. RR ) -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
| 72 | 63 71 | mpdan | |- ( N e. NN -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
| 73 | 72 63 | eqeltrd | |- ( N e. NN -> ( B ` N ) e. RR ) |
| 74 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 75 | 1 | stirlinglem2 | |- ( ( N + 1 ) e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) |
| 76 | 74 75 | syl | |- ( N e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) |
| 77 | 76 | relogcld | |- ( N e. NN -> ( log ` ( A ` ( N + 1 ) ) ) e. RR ) |
| 78 | nfcv | |- F/_ n ( N + 1 ) |
|
| 79 | 67 78 | nffv | |- F/_ n ( A ` ( N + 1 ) ) |
| 80 | 65 79 | nffv | |- F/_ n ( log ` ( A ` ( N + 1 ) ) ) |
| 81 | 2fveq3 | |- ( n = ( N + 1 ) -> ( log ` ( A ` n ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) |
|
| 82 | 78 80 81 2 | fvmptf | |- ( ( ( N + 1 ) e. NN /\ ( log ` ( A ` ( N + 1 ) ) ) e. RR ) -> ( B ` ( N + 1 ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) |
| 83 | 74 77 82 | syl2anc | |- ( N e. NN -> ( B ` ( N + 1 ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) |
| 84 | 83 77 | eqeltrd | |- ( N e. NN -> ( B ` ( N + 1 ) ) e. RR ) |
| 85 | 73 84 | resubcld | |- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) e. RR ) |
| 86 | 31 29 | remulcld | |- ( N e. NN -> ( 2 x. 1 ) e. RR ) |
| 87 | 0le2 | |- 0 <_ 2 |
|
| 88 | 87 | a1i | |- ( N e. NN -> 0 <_ 2 ) |
| 89 | 0le1 | |- 0 <_ 1 |
|
| 90 | 89 | a1i | |- ( N e. NN -> 0 <_ 1 ) |
| 91 | 31 29 88 90 | mulge0d | |- ( N e. NN -> 0 <_ ( 2 x. 1 ) ) |
| 92 | 86 91 | ge0p1rpd | |- ( N e. NN -> ( ( 2 x. 1 ) + 1 ) e. RR+ ) |
| 93 | 92 | rpreccld | |- ( N e. NN -> ( 1 / ( ( 2 x. 1 ) + 1 ) ) e. RR+ ) |
| 94 | 39 | rpge0d | |- ( N e. NN -> 0 <_ N ) |
| 95 | 31 32 88 94 | mulge0d | |- ( N e. NN -> 0 <_ ( 2 x. N ) ) |
| 96 | 33 95 | ge0p1rpd | |- ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR+ ) |
| 97 | 96 | rpreccld | |- ( N e. NN -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR+ ) |
| 98 | 2z | |- 2 e. ZZ |
|
| 99 | 98 | a1i | |- ( N e. NN -> 2 e. ZZ ) |
| 100 | 1z | |- 1 e. ZZ |
|
| 101 | 100 | a1i | |- ( N e. NN -> 1 e. ZZ ) |
| 102 | 99 101 | zmulcld | |- ( N e. NN -> ( 2 x. 1 ) e. ZZ ) |
| 103 | 97 102 | rpexpcld | |- ( N e. NN -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) e. RR+ ) |
| 104 | 93 103 | rpmulcld | |- ( N e. NN -> ( ( 1 / ( ( 2 x. 1 ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. 1 ) ) ) e. RR+ ) |
| 105 | 52 104 | eqeltrd | |- ( N e. NN -> ( K ` 1 ) e. RR+ ) |
| 106 | 105 | rpgt0d | |- ( N e. NN -> 0 < ( K ` 1 ) ) |
| 107 | 85 61 | resubcld | |- ( N e. NN -> ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) e. RR ) |
| 108 | eqid | |- ( ZZ>= ` ( 1 + 1 ) ) = ( ZZ>= ` ( 1 + 1 ) ) |
|
| 109 | 101 | peano2zd | |- ( N e. NN -> ( 1 + 1 ) e. ZZ ) |
| 110 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 111 | 3 | a1i | |- ( ( N e. NN /\ j e. NN ) -> K = ( k e. NN |-> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) ) ) |
| 112 | oveq2 | |- ( k = j -> ( 2 x. k ) = ( 2 x. j ) ) |
|
| 113 | 112 | oveq1d | |- ( k = j -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. j ) + 1 ) ) |
| 114 | 113 | oveq2d | |- ( k = j -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( 1 / ( ( 2 x. j ) + 1 ) ) ) |
| 115 | 112 | oveq2d | |- ( k = j -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) = ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) |
| 116 | 114 115 | oveq12d | |- ( k = j -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) |
| 117 | 116 | adantl | |- ( ( ( N e. NN /\ j e. NN ) /\ k = j ) -> ( ( 1 / ( ( 2 x. k ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. k ) ) ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) |
| 118 | simpr | |- ( ( N e. NN /\ j e. NN ) -> j e. NN ) |
|
| 119 | 2cnd | |- ( ( N e. NN /\ j e. NN ) -> 2 e. CC ) |
|
| 120 | nncn | |- ( j e. NN -> j e. CC ) |
|
| 121 | 120 | adantl | |- ( ( N e. NN /\ j e. NN ) -> j e. CC ) |
| 122 | 119 121 | mulcld | |- ( ( N e. NN /\ j e. NN ) -> ( 2 x. j ) e. CC ) |
| 123 | 1cnd | |- ( ( N e. NN /\ j e. NN ) -> 1 e. CC ) |
|
| 124 | 122 123 | addcld | |- ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. j ) + 1 ) e. CC ) |
| 125 | 0red | |- ( ( N e. NN /\ j e. NN ) -> 0 e. RR ) |
|
| 126 | 1red | |- ( ( N e. NN /\ j e. NN ) -> 1 e. RR ) |
|
| 127 | 30 | a1i | |- ( ( N e. NN /\ j e. NN ) -> 2 e. RR ) |
| 128 | nnre | |- ( j e. NN -> j e. RR ) |
|
| 129 | 128 | adantl | |- ( ( N e. NN /\ j e. NN ) -> j e. RR ) |
| 130 | 127 129 | remulcld | |- ( ( N e. NN /\ j e. NN ) -> ( 2 x. j ) e. RR ) |
| 131 | 130 126 | readdcld | |- ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. j ) + 1 ) e. RR ) |
| 132 | 35 | a1i | |- ( ( N e. NN /\ j e. NN ) -> 0 < 1 ) |
| 133 | 37 | a1i | |- ( ( N e. NN /\ j e. NN ) -> 2 e. RR+ ) |
| 134 | nnrp | |- ( j e. NN -> j e. RR+ ) |
|
| 135 | 134 | adantl | |- ( ( N e. NN /\ j e. NN ) -> j e. RR+ ) |
| 136 | 133 135 | rpmulcld | |- ( ( N e. NN /\ j e. NN ) -> ( 2 x. j ) e. RR+ ) |
| 137 | 126 136 | ltaddrp2d | |- ( ( N e. NN /\ j e. NN ) -> 1 < ( ( 2 x. j ) + 1 ) ) |
| 138 | 125 126 131 132 137 | lttrd | |- ( ( N e. NN /\ j e. NN ) -> 0 < ( ( 2 x. j ) + 1 ) ) |
| 139 | 138 | gt0ne0d | |- ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. j ) + 1 ) =/= 0 ) |
| 140 | 124 139 | reccld | |- ( ( N e. NN /\ j e. NN ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. CC ) |
| 141 | 26 | adantr | |- ( ( N e. NN /\ j e. NN ) -> N e. CC ) |
| 142 | 119 141 | mulcld | |- ( ( N e. NN /\ j e. NN ) -> ( 2 x. N ) e. CC ) |
| 143 | 142 123 | addcld | |- ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. N ) + 1 ) e. CC ) |
| 144 | 43 | adantr | |- ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 145 | 143 144 | reccld | |- ( ( N e. NN /\ j e. NN ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. CC ) |
| 146 | 45 | a1i | |- ( ( N e. NN /\ j e. NN ) -> 2 e. NN0 ) |
| 147 | nnnn0 | |- ( j e. NN -> j e. NN0 ) |
|
| 148 | 147 | adantl | |- ( ( N e. NN /\ j e. NN ) -> j e. NN0 ) |
| 149 | 146 148 | nn0mulcld | |- ( ( N e. NN /\ j e. NN ) -> ( 2 x. j ) e. NN0 ) |
| 150 | 145 149 | expcld | |- ( ( N e. NN /\ j e. NN ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) e. CC ) |
| 151 | 140 150 | mulcld | |- ( ( N e. NN /\ j e. NN ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) e. CC ) |
| 152 | 111 117 118 151 | fvmptd | |- ( ( N e. NN /\ j e. NN ) -> ( K ` j ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) |
| 153 | 0red | |- ( j e. NN -> 0 e. RR ) |
|
| 154 | 1red | |- ( j e. NN -> 1 e. RR ) |
|
| 155 | 30 | a1i | |- ( j e. NN -> 2 e. RR ) |
| 156 | 155 128 | remulcld | |- ( j e. NN -> ( 2 x. j ) e. RR ) |
| 157 | 156 154 | readdcld | |- ( j e. NN -> ( ( 2 x. j ) + 1 ) e. RR ) |
| 158 | 35 | a1i | |- ( j e. NN -> 0 < 1 ) |
| 159 | 37 | a1i | |- ( j e. NN -> 2 e. RR+ ) |
| 160 | 159 134 | rpmulcld | |- ( j e. NN -> ( 2 x. j ) e. RR+ ) |
| 161 | 154 160 | ltaddrp2d | |- ( j e. NN -> 1 < ( ( 2 x. j ) + 1 ) ) |
| 162 | 153 154 157 158 161 | lttrd | |- ( j e. NN -> 0 < ( ( 2 x. j ) + 1 ) ) |
| 163 | 162 | gt0ne0d | |- ( j e. NN -> ( ( 2 x. j ) + 1 ) =/= 0 ) |
| 164 | 163 | adantl | |- ( ( N e. NN /\ j e. NN ) -> ( ( 2 x. j ) + 1 ) =/= 0 ) |
| 165 | 124 164 | reccld | |- ( ( N e. NN /\ j e. NN ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. CC ) |
| 166 | 165 150 | mulcld | |- ( ( N e. NN /\ j e. NN ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) e. CC ) |
| 167 | 152 166 | eqeltrd | |- ( ( N e. NN /\ j e. NN ) -> ( K ` j ) e. CC ) |
| 168 | eqid | |- ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
|
| 169 | 1 2 168 3 | stirlinglem9 | |- ( N e. NN -> seq 1 ( + , K ) ~~> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) |
| 170 | 110 13 167 169 | clim2ser | |- ( N e. NN -> seq ( 1 + 1 ) ( + , K ) ~~> ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( seq 1 ( + , K ) ` 1 ) ) ) |
| 171 | peano2nn | |- ( 1 e. NN -> ( 1 + 1 ) e. NN ) |
|
| 172 | uznnssnn | |- ( ( 1 + 1 ) e. NN -> ( ZZ>= ` ( 1 + 1 ) ) C_ NN ) |
|
| 173 | 12 171 172 | mp2b | |- ( ZZ>= ` ( 1 + 1 ) ) C_ NN |
| 174 | 173 | a1i | |- ( N e. NN -> ( ZZ>= ` ( 1 + 1 ) ) C_ NN ) |
| 175 | 174 | sseld | |- ( N e. NN -> ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> j e. NN ) ) |
| 176 | 175 | imdistani | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( N e. NN /\ j e. NN ) ) |
| 177 | 176 152 | syl | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( K ` j ) = ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) |
| 178 | 30 | a1i | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 2 e. RR ) |
| 179 | eluzelre | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> j e. RR ) |
|
| 180 | 178 179 | remulcld | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( 2 x. j ) e. RR ) |
| 181 | 1red | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 1 e. RR ) |
|
| 182 | 180 181 | readdcld | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( ( 2 x. j ) + 1 ) e. RR ) |
| 183 | 173 | sseli | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> j e. NN ) |
| 184 | 183 163 | syl | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( ( 2 x. j ) + 1 ) =/= 0 ) |
| 185 | 182 184 | rereccld | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. RR ) |
| 186 | 185 | adantl | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 1 / ( ( 2 x. j ) + 1 ) ) e. RR ) |
| 187 | 34 | adantr | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 2 x. N ) + 1 ) e. RR ) |
| 188 | 43 | adantr | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 2 x. N ) + 1 ) =/= 0 ) |
| 189 | 187 188 | rereccld | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 1 / ( ( 2 x. N ) + 1 ) ) e. RR ) |
| 190 | 176 149 | syl | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 2 x. j ) e. NN0 ) |
| 191 | 189 190 | reexpcld | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) e. RR ) |
| 192 | 186 191 | remulcld | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) e. RR ) |
| 193 | 177 192 | eqeltrd | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( K ` j ) e. RR ) |
| 194 | 1red | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 1 e. RR ) |
|
| 195 | 30 | a1i | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 2 e. RR ) |
| 196 | 176 129 | syl | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> j e. RR ) |
| 197 | 195 196 | remulcld | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 2 x. j ) e. RR ) |
| 198 | 87 | a1i | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ 2 ) |
| 199 | 0red | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 0 e. RR ) |
|
| 200 | 87 | a1i | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 0 <_ 2 ) |
| 201 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 202 | eluzle | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> ( 1 + 1 ) <_ j ) |
|
| 203 | 201 202 | eqbrtrrid | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 2 <_ j ) |
| 204 | 199 178 179 200 203 | letrd | |- ( j e. ( ZZ>= ` ( 1 + 1 ) ) -> 0 <_ j ) |
| 205 | 204 | adantl | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ j ) |
| 206 | 195 196 198 205 | mulge0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( 2 x. j ) ) |
| 207 | 197 206 | ge0p1rpd | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 2 x. j ) + 1 ) e. RR+ ) |
| 208 | 89 | a1i | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ 1 ) |
| 209 | 194 207 208 | divge0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( 1 / ( ( 2 x. j ) + 1 ) ) ) |
| 210 | 32 | adantr | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> N e. RR ) |
| 211 | 195 210 | remulcld | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( 2 x. N ) e. RR ) |
| 212 | 94 | adantr | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ N ) |
| 213 | 195 210 198 212 | mulge0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( 2 x. N ) ) |
| 214 | 211 213 | ge0p1rpd | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( ( 2 x. N ) + 1 ) e. RR+ ) |
| 215 | 194 214 208 | divge0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( 1 / ( ( 2 x. N ) + 1 ) ) ) |
| 216 | 189 190 215 | expge0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) |
| 217 | 186 191 209 216 | mulge0d | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( ( 1 / ( ( 2 x. j ) + 1 ) ) x. ( ( 1 / ( ( 2 x. N ) + 1 ) ) ^ ( 2 x. j ) ) ) ) |
| 218 | 217 177 | breqtrrd | |- ( ( N e. NN /\ j e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 0 <_ ( K ` j ) ) |
| 219 | 108 109 170 193 218 | iserge0 | |- ( N e. NN -> 0 <_ ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( seq 1 ( + , K ) ` 1 ) ) ) |
| 220 | seq1 | |- ( 1 e. ZZ -> ( seq 1 ( + , K ) ` 1 ) = ( K ` 1 ) ) |
|
| 221 | 100 220 | mp1i | |- ( N e. NN -> ( seq 1 ( + , K ) ` 1 ) = ( K ` 1 ) ) |
| 222 | 221 | oveq2d | |- ( N e. NN -> ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( seq 1 ( + , K ) ` 1 ) ) = ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) ) |
| 223 | 219 222 | breqtrd | |- ( N e. NN -> 0 <_ ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) ) |
| 224 | 4 107 61 223 | leadd1dd | |- ( N e. NN -> ( 0 + ( K ` 1 ) ) <_ ( ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) + ( K ` 1 ) ) ) |
| 225 | 52 51 | eqeltrd | |- ( N e. NN -> ( K ` 1 ) e. CC ) |
| 226 | 225 | addlidd | |- ( N e. NN -> ( 0 + ( K ` 1 ) ) = ( K ` 1 ) ) |
| 227 | 73 | recnd | |- ( N e. NN -> ( B ` N ) e. CC ) |
| 228 | 84 | recnd | |- ( N e. NN -> ( B ` ( N + 1 ) ) e. CC ) |
| 229 | 227 228 | subcld | |- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) e. CC ) |
| 230 | 229 225 | npcand | |- ( N e. NN -> ( ( ( ( B ` N ) - ( B ` ( N + 1 ) ) ) - ( K ` 1 ) ) + ( K ` 1 ) ) = ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) |
| 231 | 224 226 230 | 3brtr3d | |- ( N e. NN -> ( K ` 1 ) <_ ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) |
| 232 | 4 61 85 106 231 | ltletrd | |- ( N e. NN -> 0 < ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) |
| 233 | 84 73 | posdifd | |- ( N e. NN -> ( ( B ` ( N + 1 ) ) < ( B ` N ) <-> 0 < ( ( B ` N ) - ( B ` ( N + 1 ) ) ) ) ) |
| 234 | 232 233 | mpbird | |- ( N e. NN -> ( B ` ( N + 1 ) ) < ( B ` N ) ) |