This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climinf.3 | |- Z = ( ZZ>= ` M ) |
|
| climinf.4 | |- ( ph -> M e. ZZ ) |
||
| climinf.5 | |- ( ph -> F : Z --> RR ) |
||
| climinf.6 | |- ( ( ph /\ k e. Z ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
||
| climinf.7 | |- ( ph -> E. x e. RR A. k e. Z x <_ ( F ` k ) ) |
||
| Assertion | climinf | |- ( ph -> F ~~> inf ( ran F , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climinf.3 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climinf.4 | |- ( ph -> M e. ZZ ) |
|
| 3 | climinf.5 | |- ( ph -> F : Z --> RR ) |
|
| 4 | climinf.6 | |- ( ( ph /\ k e. Z ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
|
| 5 | climinf.7 | |- ( ph -> E. x e. RR A. k e. Z x <_ ( F ` k ) ) |
|
| 6 | 3 | frnd | |- ( ph -> ran F C_ RR ) |
| 7 | 3 | ffnd | |- ( ph -> F Fn Z ) |
| 8 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 9 | 2 8 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 10 | 9 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 11 | fnfvelrn | |- ( ( F Fn Z /\ M e. Z ) -> ( F ` M ) e. ran F ) |
|
| 12 | 7 10 11 | syl2anc | |- ( ph -> ( F ` M ) e. ran F ) |
| 13 | 12 | ne0d | |- ( ph -> ran F =/= (/) ) |
| 14 | breq2 | |- ( y = ( F ` k ) -> ( x <_ y <-> x <_ ( F ` k ) ) ) |
|
| 15 | 14 | ralrn | |- ( F Fn Z -> ( A. y e. ran F x <_ y <-> A. k e. Z x <_ ( F ` k ) ) ) |
| 16 | 15 | rexbidv | |- ( F Fn Z -> ( E. x e. RR A. y e. ran F x <_ y <-> E. x e. RR A. k e. Z x <_ ( F ` k ) ) ) |
| 17 | 7 16 | syl | |- ( ph -> ( E. x e. RR A. y e. ran F x <_ y <-> E. x e. RR A. k e. Z x <_ ( F ` k ) ) ) |
| 18 | 5 17 | mpbird | |- ( ph -> E. x e. RR A. y e. ran F x <_ y ) |
| 19 | 6 13 18 | 3jca | |- ( ph -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F x <_ y ) ) |
| 20 | 19 | adantr | |- ( ( ph /\ y e. RR+ ) -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F x <_ y ) ) |
| 21 | infrecl | |- ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F x <_ y ) -> inf ( ran F , RR , < ) e. RR ) |
|
| 22 | 20 21 | syl | |- ( ( ph /\ y e. RR+ ) -> inf ( ran F , RR , < ) e. RR ) |
| 23 | simpr | |- ( ( ph /\ y e. RR+ ) -> y e. RR+ ) |
|
| 24 | 22 23 | ltaddrpd | |- ( ( ph /\ y e. RR+ ) -> inf ( ran F , RR , < ) < ( inf ( ran F , RR , < ) + y ) ) |
| 25 | rpre | |- ( y e. RR+ -> y e. RR ) |
|
| 26 | 25 | adantl | |- ( ( ph /\ y e. RR+ ) -> y e. RR ) |
| 27 | 22 26 | readdcld | |- ( ( ph /\ y e. RR+ ) -> ( inf ( ran F , RR , < ) + y ) e. RR ) |
| 28 | infrglb | |- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F x <_ y ) /\ ( inf ( ran F , RR , < ) + y ) e. RR ) -> ( inf ( ran F , RR , < ) < ( inf ( ran F , RR , < ) + y ) <-> E. k e. ran F k < ( inf ( ran F , RR , < ) + y ) ) ) |
|
| 29 | 20 27 28 | syl2anc | |- ( ( ph /\ y e. RR+ ) -> ( inf ( ran F , RR , < ) < ( inf ( ran F , RR , < ) + y ) <-> E. k e. ran F k < ( inf ( ran F , RR , < ) + y ) ) ) |
| 30 | 24 29 | mpbid | |- ( ( ph /\ y e. RR+ ) -> E. k e. ran F k < ( inf ( ran F , RR , < ) + y ) ) |
| 31 | 6 | sselda | |- ( ( ph /\ k e. ran F ) -> k e. RR ) |
| 32 | 31 | adantlr | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> k e. RR ) |
| 33 | 22 | adantr | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> inf ( ran F , RR , < ) e. RR ) |
| 34 | 25 | ad2antlr | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> y e. RR ) |
| 35 | 33 34 | readdcld | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( inf ( ran F , RR , < ) + y ) e. RR ) |
| 36 | 32 35 34 | ltsub1d | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( k < ( inf ( ran F , RR , < ) + y ) <-> ( k - y ) < ( ( inf ( ran F , RR , < ) + y ) - y ) ) ) |
| 37 | 6 13 18 21 | syl3anc | |- ( ph -> inf ( ran F , RR , < ) e. RR ) |
| 38 | 37 | recnd | |- ( ph -> inf ( ran F , RR , < ) e. CC ) |
| 39 | 38 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> inf ( ran F , RR , < ) e. CC ) |
| 40 | 34 | recnd | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> y e. CC ) |
| 41 | 39 40 | pncand | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( ( inf ( ran F , RR , < ) + y ) - y ) = inf ( ran F , RR , < ) ) |
| 42 | 41 | breq2d | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( ( k - y ) < ( ( inf ( ran F , RR , < ) + y ) - y ) <-> ( k - y ) < inf ( ran F , RR , < ) ) ) |
| 43 | 36 42 | bitrd | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( k < ( inf ( ran F , RR , < ) + y ) <-> ( k - y ) < inf ( ran F , RR , < ) ) ) |
| 44 | 43 | biimpd | |- ( ( ( ph /\ y e. RR+ ) /\ k e. ran F ) -> ( k < ( inf ( ran F , RR , < ) + y ) -> ( k - y ) < inf ( ran F , RR , < ) ) ) |
| 45 | 44 | reximdva | |- ( ( ph /\ y e. RR+ ) -> ( E. k e. ran F k < ( inf ( ran F , RR , < ) + y ) -> E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) ) ) |
| 46 | 30 45 | mpd | |- ( ( ph /\ y e. RR+ ) -> E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) ) |
| 47 | oveq1 | |- ( k = ( F ` j ) -> ( k - y ) = ( ( F ` j ) - y ) ) |
|
| 48 | 47 | breq1d | |- ( k = ( F ` j ) -> ( ( k - y ) < inf ( ran F , RR , < ) <-> ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) ) |
| 49 | 48 | rexrn | |- ( F Fn Z -> ( E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) <-> E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) ) |
| 50 | 7 49 | syl | |- ( ph -> ( E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) <-> E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) ) |
| 51 | 50 | biimpa | |- ( ( ph /\ E. k e. ran F ( k - y ) < inf ( ran F , RR , < ) ) -> E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) |
| 52 | 46 51 | syldan | |- ( ( ph /\ y e. RR+ ) -> E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) ) |
| 53 | 3 | adantr | |- ( ( ph /\ y e. RR+ ) -> F : Z --> RR ) |
| 54 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 55 | ffvelcdm | |- ( ( F : Z --> RR /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 56 | 53 54 55 | syl2an | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. RR ) |
| 57 | simpl | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> j e. Z ) |
|
| 58 | ffvelcdm | |- ( ( F : Z --> RR /\ j e. Z ) -> ( F ` j ) e. RR ) |
|
| 59 | 53 57 58 | syl2an | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` j ) e. RR ) |
| 60 | 37 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> inf ( ran F , RR , < ) e. RR ) |
| 61 | simprr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> k e. ( ZZ>= ` j ) ) |
|
| 62 | fzssuz | |- ( j ... k ) C_ ( ZZ>= ` j ) |
|
| 63 | uzss | |- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` M ) ) |
|
| 64 | 63 1 | sseqtrrdi | |- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) C_ Z ) |
| 65 | 64 1 | eleq2s | |- ( j e. Z -> ( ZZ>= ` j ) C_ Z ) |
| 66 | 65 | ad2antrl | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ZZ>= ` j ) C_ Z ) |
| 67 | 62 66 | sstrid | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( j ... k ) C_ Z ) |
| 68 | ffvelcdm | |- ( ( F : Z --> RR /\ n e. Z ) -> ( F ` n ) e. RR ) |
|
| 69 | 68 | ralrimiva | |- ( F : Z --> RR -> A. n e. Z ( F ` n ) e. RR ) |
| 70 | 3 69 | syl | |- ( ph -> A. n e. Z ( F ` n ) e. RR ) |
| 71 | 70 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. n e. Z ( F ` n ) e. RR ) |
| 72 | ssralv | |- ( ( j ... k ) C_ Z -> ( A. n e. Z ( F ` n ) e. RR -> A. n e. ( j ... k ) ( F ` n ) e. RR ) ) |
|
| 73 | 67 71 72 | sylc | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. n e. ( j ... k ) ( F ` n ) e. RR ) |
| 74 | 73 | r19.21bi | |- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... k ) ) -> ( F ` n ) e. RR ) |
| 75 | fzssuz | |- ( j ... ( k - 1 ) ) C_ ( ZZ>= ` j ) |
|
| 76 | 75 66 | sstrid | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( j ... ( k - 1 ) ) C_ Z ) |
| 77 | 76 | sselda | |- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... ( k - 1 ) ) ) -> n e. Z ) |
| 78 | 4 | ralrimiva | |- ( ph -> A. k e. Z ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 79 | 78 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. k e. Z ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 80 | fvoveq1 | |- ( k = n -> ( F ` ( k + 1 ) ) = ( F ` ( n + 1 ) ) ) |
|
| 81 | fveq2 | |- ( k = n -> ( F ` k ) = ( F ` n ) ) |
|
| 82 | 80 81 | breq12d | |- ( k = n -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) ) |
| 83 | 82 | rspccva | |- ( ( A. k e. Z ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ n e. Z ) -> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
| 84 | 79 83 | sylan | |- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. Z ) -> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
| 85 | 77 84 | syldan | |- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... ( k - 1 ) ) ) -> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
| 86 | 61 74 85 | monoord2 | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) <_ ( F ` j ) ) |
| 87 | 56 59 60 86 | lesub1dd | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( F ` k ) - inf ( ran F , RR , < ) ) <_ ( ( F ` j ) - inf ( ran F , RR , < ) ) ) |
| 88 | 56 60 | resubcld | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( F ` k ) - inf ( ran F , RR , < ) ) e. RR ) |
| 89 | 59 60 | resubcld | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) - inf ( ran F , RR , < ) ) e. RR ) |
| 90 | 25 | ad2antlr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> y e. RR ) |
| 91 | lelttr | |- ( ( ( ( F ` k ) - inf ( ran F , RR , < ) ) e. RR /\ ( ( F ` j ) - inf ( ran F , RR , < ) ) e. RR /\ y e. RR ) -> ( ( ( ( F ` k ) - inf ( ran F , RR , < ) ) <_ ( ( F ` j ) - inf ( ran F , RR , < ) ) /\ ( ( F ` j ) - inf ( ran F , RR , < ) ) < y ) -> ( ( F ` k ) - inf ( ran F , RR , < ) ) < y ) ) |
|
| 92 | 88 89 90 91 | syl3anc | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( ( F ` k ) - inf ( ran F , RR , < ) ) <_ ( ( F ` j ) - inf ( ran F , RR , < ) ) /\ ( ( F ` j ) - inf ( ran F , RR , < ) ) < y ) -> ( ( F ` k ) - inf ( ran F , RR , < ) ) < y ) ) |
| 93 | 87 92 | mpand | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( F ` j ) - inf ( ran F , RR , < ) ) < y -> ( ( F ` k ) - inf ( ran F , RR , < ) ) < y ) ) |
| 94 | ltsub23 | |- ( ( ( F ` j ) e. RR /\ y e. RR /\ inf ( ran F , RR , < ) e. RR ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) <-> ( ( F ` j ) - inf ( ran F , RR , < ) ) < y ) ) |
|
| 95 | 59 90 60 94 | syl3anc | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) <-> ( ( F ` j ) - inf ( ran F , RR , < ) ) < y ) ) |
| 96 | 6 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ran F C_ RR ) |
| 97 | 7 | adantr | |- ( ( ph /\ y e. RR+ ) -> F Fn Z ) |
| 98 | fnfvelrn | |- ( ( F Fn Z /\ k e. Z ) -> ( F ` k ) e. ran F ) |
|
| 99 | 97 54 98 | syl2an | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. ran F ) |
| 100 | 96 99 | sseldd | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. RR ) |
| 101 | 18 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> E. x e. RR A. y e. ran F x <_ y ) |
| 102 | infrelb | |- ( ( ran F C_ RR /\ E. x e. RR A. y e. ran F x <_ y /\ ( F ` k ) e. ran F ) -> inf ( ran F , RR , < ) <_ ( F ` k ) ) |
|
| 103 | 96 101 99 102 | syl3anc | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> inf ( ran F , RR , < ) <_ ( F ` k ) ) |
| 104 | 60 100 103 | abssubge0d | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) = ( ( F ` k ) - inf ( ran F , RR , < ) ) ) |
| 105 | 104 | breq1d | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y <-> ( ( F ` k ) - inf ( ran F , RR , < ) ) < y ) ) |
| 106 | 93 95 105 | 3imtr4d | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) -> ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
| 107 | 106 | anassrs | |- ( ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) -> ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
| 108 | 107 | ralrimdva | |- ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) -> ( ( ( F ` j ) - y ) < inf ( ran F , RR , < ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
| 109 | 108 | reximdva | |- ( ( ph /\ y e. RR+ ) -> ( E. j e. Z ( ( F ` j ) - y ) < inf ( ran F , RR , < ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
| 110 | 52 109 | mpd | |- ( ( ph /\ y e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) |
| 111 | 110 | ralrimiva | |- ( ph -> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) |
| 112 | 1 | fvexi | |- Z e. _V |
| 113 | fex | |- ( ( F : Z --> RR /\ Z e. _V ) -> F e. _V ) |
|
| 114 | 3 112 113 | sylancl | |- ( ph -> F e. _V ) |
| 115 | eqidd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
|
| 116 | 3 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 117 | 116 | recnd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 118 | 1 2 114 115 38 117 | clim2c | |- ( ph -> ( F ~~> inf ( ran F , RR , < ) <-> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - inf ( ran F , RR , < ) ) ) < y ) ) |
| 119 | 111 118 | mpbird | |- ( ph -> F ~~> inf ( ran F , RR , < ) ) |