This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lesubadd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> A <_ ( C + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 2 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 3 | 1 2 | resubcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A - B ) e. RR ) |
| 4 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 5 | leadd1 | |- ( ( ( A - B ) e. RR /\ C e. RR /\ B e. RR ) -> ( ( A - B ) <_ C <-> ( ( A - B ) + B ) <_ ( C + B ) ) ) |
|
| 6 | 3 4 2 5 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> ( ( A - B ) + B ) <_ ( C + B ) ) ) |
| 7 | 1 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 8 | 2 | recnd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 9 | 7 8 | npcand | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) + B ) = A ) |
| 10 | 9 | breq1d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A - B ) + B ) <_ ( C + B ) <-> A <_ ( C + B ) ) ) |
| 11 | 6 10 | bitrd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> A <_ ( C + B ) ) ) |