This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resubgval.m | |- .- = ( -g ` RRfld ) |
|
| Assertion | resubgval | |- ( ( X e. RR /\ Y e. RR ) -> ( X - Y ) = ( X .- Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubgval.m | |- .- = ( -g ` RRfld ) |
|
| 2 | resubdrg | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
|
| 3 | 2 | simpli | |- RR e. ( SubRing ` CCfld ) |
| 4 | subrgsubg | |- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
|
| 5 | 3 4 | ax-mp | |- RR e. ( SubGrp ` CCfld ) |
| 6 | cnfldsub | |- - = ( -g ` CCfld ) |
|
| 7 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 8 | 6 7 1 | subgsub | |- ( ( RR e. ( SubGrp ` CCfld ) /\ X e. RR /\ Y e. RR ) -> ( X - Y ) = ( X .- Y ) ) |
| 9 | 5 8 | mp3an1 | |- ( ( X e. RR /\ Y e. RR ) -> ( X - Y ) = ( X .- Y ) ) |