This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of fvmpt2 . (Contributed by Thierry Arnoux, 8-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmpt2d.1 | |- ( ph -> F = ( x e. A |-> B ) ) |
|
| fvmpt2d.4 | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
| Assertion | fvmpt2d | |- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt2d.1 | |- ( ph -> F = ( x e. A |-> B ) ) |
|
| 2 | fvmpt2d.4 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 3 | 1 | fveq1d | |- ( ph -> ( F ` x ) = ( ( x e. A |-> B ) ` x ) ) |
| 4 | 3 | adantr | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( ( x e. A |-> B ) ` x ) ) |
| 5 | id | |- ( x e. A -> x e. A ) |
|
| 6 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 7 | 6 | fvmpt2 | |- ( ( x e. A /\ B e. V ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 8 | 5 2 7 | syl2an2 | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 9 | 4 8 | eqtrd | |- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |