This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | |- H = ( RR^ ` I ) |
|
| rrxbase.b | |- B = ( Base ` H ) |
||
| Assertion | rrxbase | |- ( I e. V -> B = { f e. ( RR ^m I ) | f finSupp 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | |- H = ( RR^ ` I ) |
|
| 2 | rrxbase.b | |- B = ( Base ` H ) |
|
| 3 | 1 | rrxval | |- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 4 | 3 | fveq2d | |- ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 5 | eqid | |- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
|
| 6 | eqid | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
|
| 7 | 5 6 | tcphbas | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 8 | 4 7 | eqtr4di | |- ( I e. V -> ( Base ` H ) = ( Base ` ( RRfld freeLMod I ) ) ) |
| 9 | 2 | a1i | |- ( I e. V -> B = ( Base ` H ) ) |
| 10 | refld | |- RRfld e. Field |
|
| 11 | eqid | |- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
|
| 12 | rebase | |- RR = ( Base ` RRfld ) |
|
| 13 | re0g | |- 0 = ( 0g ` RRfld ) |
|
| 14 | eqid | |- { f e. ( RR ^m I ) | f finSupp 0 } = { f e. ( RR ^m I ) | f finSupp 0 } |
|
| 15 | 11 12 13 14 | frlmbas | |- ( ( RRfld e. Field /\ I e. V ) -> { f e. ( RR ^m I ) | f finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
| 16 | 10 15 | mpan | |- ( I e. V -> { f e. ( RR ^m I ) | f finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
| 17 | 8 9 16 | 3eqtr4d | |- ( I e. V -> B = { f e. ( RR ^m I ) | f finSupp 0 } ) |